Functional genomic hypothesis generation and experimentation by a robot scientist

被引:415
作者
King, RD
Whelan, KE
Jones, FM
Reiser, PGK
Bryant, CH
Muggleton, SH
Kell, DB
Oliver, SG
机构
[1] Univ Manchester, Sch Biol Sci, Manchester M13 9PT, Lancs, England
[2] Univ Wales, Dept Comp Sci, Aberystwyth SY23 3DB, Dyfed, Wales
[3] Robert Gordon Univ, Sch Comp, Aberdeen AB10 1FR, Scotland
[4] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[5] Univ Manchester, Dept Chem, Manchester M60 1QD, Lancs, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
D O I
10.1038/nature02236
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The question of whether it is possible to automate the scientific process is of both great theoretical interest(1,2) and increasing practical importance because, in many scientific areas, data are being generated much faster than they can be effectively analysed. We describe a physically implemented robotic system that applies techniques from artificial intelligence(3-8) to carry out cycles of scientific experimentation. The system automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using a laboratory robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the cycle. Here we apply the system to the determination of gene function using deletion mutants of yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments(9). We built and tested a detailed logical model (involving genes, proteins and metabolites) of the aromatic amino acid synthesis pathway. In biological experiments that automatically reconstruct parts of this model, we show that an intelligent experiment selection strategy is competitive with human performance and significantly outperforms, with a cost decrease of 3-fold and 100-fold (respectively), both cheapest and random-experiment selection.
引用
收藏
页码:247 / 252
页数:6
相关论文
共 27 条
[1]  
[Anonymous], 2001, ELECT T ARTIFICIAL I
[2]   Genetic control of biochemical reactions in neurospora [J].
Beadle, GW ;
Tatum, EL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :499-506
[3]  
Brachmann CB, 1998, YEAST, V14, P115
[4]  
BRYANT J, 2001, HEALTH TECHNOL ASSES, V5, P1
[5]  
Buchanan B., 1969, Machine Intelligence, V4, P209
[6]  
Cochran W.G., 1992, Experimental designs
[7]   Active learning with statistical models [J].
Cohn, DA ;
Ghahramani, Z ;
Jordan, MI .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1996, 4 :129-145
[8]  
Fedorov VV., 1972, THEORY OPTIMAL EXPT
[9]  
Flach P.A., 2000, ABDUCTION INDUCTION, DOI DOI 10.1007/978-94-017-0606-3
[10]   Functional profiling of the Saccharomyces cerevisiae genome [J].
Giaever, G ;
Chu, AM ;
Ni, L ;
Connelly, C ;
Riles, L ;
Véronneau, S ;
Dow, S ;
Lucau-Danila, A ;
Anderson, K ;
André, B ;
Arkin, AP ;
Astromoff, A ;
El Bakkoury, M ;
Bangham, R ;
Benito, R ;
Brachat, S ;
Campanaro, S ;
Curtiss, M ;
Davis, K ;
Deutschbauer, A ;
Entian, KD ;
Flaherty, P ;
Foury, F ;
Garfinkel, DJ ;
Gerstein, M ;
Gotte, D ;
Güldener, U ;
Hegemann, JH ;
Hempel, S ;
Herman, Z ;
Jaramillo, DF ;
Kelly, DE ;
Kelly, SL ;
Kötter, P ;
LaBonte, D ;
Lamb, DC ;
Lan, N ;
Liang, H ;
Liao, H ;
Liu, L ;
Luo, CY ;
Lussier, M ;
Mao, R ;
Menard, P ;
Ooi, SL ;
Revuelta, JL ;
Roberts, CJ ;
Rose, M ;
Ross-Macdonald, P ;
Scherens, B .
NATURE, 2002, 418 (6896) :387-391