Effect of Binder Content and Sand Type on Mechanical Characteristics of Ultra-High Performance Concrete

被引:14
|
作者
El-Mir, Abdulkader [1 ]
Nehme, Salem G. [2 ]
Assaad, Joseph J. [3 ]
机构
[1] Univ Balamand, Dept Civil & Environm Engn, Tripoli 1400, Lebanon
[2] Budapest Univ Technol & Econ, Dept Construct Mat & Technol, H-1111 Budapest, Hungary
[3] Univ Balamand, Dept Civil & Environm Engn, Tripoli 1400, Lebanon
关键词
Ultra-high performance concrete; Binder content; Cement; Strength; Durability; THERMAL-CRACKING; MASS CONCRETE; STRENGTH; FIBER; MICROSTRUCTURE; HYDRATION; STEEL; SHRINKAGE; HEAT;
D O I
10.1007/s13369-022-06733-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ultra-high performance concrete (UHPC) mixtures are typically proportioned using high binder content and low water-to-binder ratio (w/b). Yet, in most cases, such recipes denote the presence of unhydrated cement and other pozzolanic materials, thus playing the role of costly fillers in the matrix. Two UHPC categories proportioned with two cement types and various binder contents ranging from 505 to 1050 kg/m(3) are investigated in this study. Test results showed that the compressive and flexural strengths followed an increasing trend with binder additions, but then tended to stabilize or decrease at higher binder concentration. The highest strengths were achieved at binder contents hovering about 575 or 690 kg/m(3) for 0.26 w/b mixtures prepared with river or quartz sands, respectively. The thermogravimetric analysis showed that UHPC made with higher binder contents exhibited increased mass loss at 500 degrees C, which corroborates the presence of increased amounts of unreacted cement compounds (i.e., CH) in matrices containing high binder content. The effect of reducing w/b and/or incorporating silica fume or metakaolin helped improving the strength of UHPC prepared with given binder content. The use of CEM I (52.5 MPa strength cement class) yielded consistently superior mechanical properties than equivalent mixtures containing CEM II (42.5 MPa strength class). The resistance against water permeability improved for UHPC containing higher binder content, suggesting that the increased cementitious phase plays a beneficial role to block the capillary pores and refine the matrix porosity.
引用
收藏
页码:13021 / 13034
页数:14
相关论文
共 50 条
  • [1] Effect of Binder Content and Sand Type on Mechanical Characteristics of Ultra-High Performance Concrete
    Abdulkader El-Mir
    Salem G. Nehme
    Joseph J. Assaad
    Arabian Journal for Science and Engineering, 2022, 47 : 13021 - 13034
  • [2] Effect of constituent content on mechanical behaviors of ultra-high performance seawater sea-sand concrete
    Jiang, Kaidi
    Wang, Xin
    Chen, Zhiyuan
    Ding, Lining
    Peng, Zheqi
    Wu, Zhishen
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 351
  • [3] Mechanical properties of recycled sand ultra-high performance concrete
    Zhang Z.
    Cai Z.
    Li L.
    Yu K.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (11): : 5158 - 5169
  • [4] Mechanical Properties of Ultra-high Performance Concrete with Recycled Sand
    Ge X.
    Chu H.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2020, 23 (04): : 810 - 815
  • [5] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [6] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Donguk Choi
    Kyungchan Hong
    Munkhtuvshin Ochirbud
    Didar Meiramov
    Piti Sukontaskuul
    International Journal of Concrete Structures and Materials, 17
  • [7] Effect of Calcined Clay Content on Dynamic Mechanical Properties of Ultra-High Performance Concrete
    Wei, Jingjie
    Wu, Zhuorui
    Fang, Changle
    Dong, Biqin
    Long, Wujian
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (11): : 2355 - 2363
  • [8] Effect of Casting Position on Mechanical Performance of Ultra-High Performance Concrete
    Zhao, Sujing
    Bo, Yiheng
    MATERIALS, 2022, 15 (02)
  • [9] Effect of temperature on mechanical properties of ultra-high performance concrete
    Banerji, Srishti
    Kodur, Venkatesh
    FIRE AND MATERIALS, 2022, 46 (01) : 287 - 301
  • [10] Effect of curing regimes on mechanical properties and microstructure of ultra-high performance concrete with full aeolian sand
    Xia, Duotian
    Liu, Hengde
    Liang, Xuan
    CONSTRUCTION AND BUILDING MATERIALS, 2025, 472