Development and Validation of a Quantitative Real-Time Polymerase Chain Reaction Classifier for Lung Cancer Prognosis

被引:21
|
作者
Chen, Guoan [1 ]
Kim, Sinae [2 ]
Taylor, Jeremy M. G. [2 ]
Wang, Zhuwen [1 ]
Lee, Oliver [2 ]
Ramnath, Nithya [3 ]
Reddy, Rishindra M. [1 ]
Lin, Jules [1 ]
Chang, Andrew C. [1 ]
Orringer, Mark B. [1 ]
Beer, David G. [1 ]
机构
[1] Univ Michigan, Sch Med, Dept Surg, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Sch Med, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Dept Internal Med, Ann Arbor, MI 48109 USA
关键词
Lung cancer; qRT-PCR; Prognosis; SQUAMOUS-CELL CARCINOMA; GENE-EXPRESSION SIGNATURES; ADJUVANT CHEMOTHERAPY; PREDICTING PROGNOSIS; SURVIVAL PREDICTION; ADENOCARCINOMA; RECURRENCE; GUIDELINES; CISPLATIN; FORESTS;
D O I
10.1097/JTO.0b013e31822918bd
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Introduction: This prospective study aimed to develop a robust and clinically applicable method to identify patients with high-risk early-stage lung cancer and then to validate this method for use in future translational studies. Methods: Three published Affymetrix microarray data sets representing 680 primary tumors were used in the survival-related gene selection procedure using clustering, Cox model, and random survival forest analysis. A final set of 91 genes was selected and tested as a predictor of survival using a quantitative real-time polymerase chain reaction-based assay using an independent cohort of 101 lung adenocarcinomas. Results: The random survival forest model built from 91 genes in the training set predicted patient survival in an independent cohort of 101 lung adenocarcinomas, with a prediction error rate of 26.6%. The mortality risk index was significantly related to survival (Cox model p < 0.00001) and separated all patients into low-, medium-, and high-risk groups (hazard ratio = 1.00, 2.82, 4.42). The mortality risk index was also related to survival in stage 1 patients (Cox model p = 0.001), separating patients into low-, medium-, and high-risk groups (hazard ratio = 1.00, 3.29, 3.77). Conclusions: The development and validation of this robust quantitative real-time polymerase chain reaction platform allows prediction of patient survival with early-stage lung cancer. Utilization will now allow investigators to evaluate it prospectively by incorporation into new clinical trials with the goal of personalized treatment of patients with lung cancer and improving patient survival.
引用
收藏
页码:1481 / 1487
页数:7
相关论文
共 50 条
  • [1] Development and validation of a Myxoma virus real-time polymerase chain reaction assay
    Albini, Sarah
    Sigrist, Brigitte
    Guettinger, Regula
    Schelling, Claude
    Hoop, Richard K.
    Voegtlin, Andrea
    JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 2012, 24 (01) : 135 - 137
  • [2] No evidence of involvement of Chlamydia pneumoniae in lung cancer by means of quantitative real-time polymerase chain reaction
    Sessa, R.
    Santino, I.
    Di Pietro, M.
    Schiavoni, G.
    Ripa, C.
    Galdiero, M.
    Iannone, M.
    Izzo, L.
    Mingazzini, P. L.
    Bolognese, A.
    Del Piano, M.
    INTERNATIONAL JOURNAL OF IMMUNOPATHOLOGY AND PHARMACOLOGY, 2008, 21 (02) : 415 - 420
  • [3] A kinetic model of quantitative real-time polymerase chain reaction
    Mehra, S
    Hu, WS
    BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (07) : 848 - 860
  • [4] Comprehensive algorithm for quantitative real-time polymerase chain reaction
    Zhao, S
    Fernald, RD
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2005, 12 (08) : 1047 - 1064
  • [5] Quantitative real time polymerase chain reaction in drug development
    Goodsaid, F
    DRUG DEVELOPMENT RESEARCH, 2004, 62 (02) : 151 - 158
  • [6] Reference Genes Selection and Validation for Cinnamomum burmanni by Real-Time Quantitative Polymerase Chain Reaction
    Shi, Lingling
    Cai, Yanling
    Yao, Jun
    Zhang, Qian
    He, Boxiang
    Lin, Shanzhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [7] Identification and Validation of Reference Genes for Quantitative Real-Time Polymerase Chain Reaction in Cimex lectularius
    Mamidala, Praveen
    Rajarapu, Swapna P.
    Jones, Susan C.
    Mittapalli, Omprakash
    JOURNAL OF MEDICAL ENTOMOLOGY, 2011, 48 (04) : 947 - 951
  • [8] Development of quantitative real-time polymerase chain reaction for duck enteritis virus DNA
    Yang, FL
    Jia, WX
    Yue, H
    Luo, W
    Chen, X
    Xie, Y
    Zen, W
    Yang, WQ
    AVIAN DISEASES, 2005, 49 (03) : 397 - 400
  • [9] Development of a quantitative real-time polymerase chain reaction assay specific for Orientia tsutsugamushi
    Jiang, J
    Chan, TC
    Temenak, JJ
    Dasch, GA
    Ching, WM
    Richards, AL
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2004, 70 (04): : 351 - 356
  • [10] Real-time polymerase chain reaction
    Oldach, D
    GASTROENTEROLOGY, 1999, 116 (03) : 763 - 765