Influence of the cathode microstructure on the stability of inverted planar perovskite solar cells

被引:13
|
作者
Sirotinskaya, Svetlana [1 ]
Schmechel, Roland [1 ]
Benson, Niels [1 ]
机构
[1] Univ Duisburg Essen, Fac Engn, Inst Technol Nanostruct NST, Bldg BA,Bismarckstr 81, D-47057 Duisburg, Germany
关键词
PROCESSED COPPER IODIDE; HOLE TRANSPORT LAYER; HALIDE PEROVSKITES; ROOM-TEMPERATURE; GRAIN-STRUCTURE; BASE ADDUCT; DEGRADATION; EFFICIENCY; DIFFUSION; MIGRATION;
D O I
10.1039/d0ra00195c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the main challenges for perovskite solar cells (PSC) is their environmental stability, as oxygen and water induced aging may result in mobile decomposition compounds, which can enhance the recombination rate and react with charge carrier extraction layers or the contact metallization. In this contribution the importance of the microstructure of the contact metallization on the environmental cell stability is investigated. For this purpose, the storage stability of inverted planar methylammonium lead iodide (MAPI)-based perovskite solar cells without encapsulation is tested, using the metals aluminum (Al), silver (Ag), gold (Au) and nickel (Ni) as representative cathode materials. For this study, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analysis of the different electrodes as well as the perovskite is correlated with PSC device current-voltage (J-V) and impedance measurements. Our findings substantiate that the metal microstructure has a significant influence on the PSC aging properties. While a strong perovskite decomposition and iodide diffusion to the contacts were detected for devices using Al, Ag or Au cathodes with a polycrystalline microstructure, these effects were strongly reduced when Ni metallization was employed, where a nanocrystalline microstructure was exhibited under the chosen process conditions.
引用
收藏
页码:23653 / 23661
页数:9
相关论文
共 50 条
  • [1] Inverted planar perovskite solar cells with efficient and stability via optimized cathode-interfacial layer
    Zhao, Zhiqiang
    Huang, Jing
    Cao, Yang
    Sun, Zhu-Zhu
    Cheng, Nian
    Sun, Shujie
    Sun, Haibin
    You, Shuai
    SOLAR ENERGY, 2020, 207 : 1165 - 1171
  • [2] Inverted planar heterojunction perovskite solar cells with high ultraviolet stability
    Zhu, Xueliang
    Lau, Cho Fai Jonathan
    Mo, Kangwei
    Cheng, Siyang
    Xu, Yalun
    Li, Ruiming
    Wang, Cheng
    Zheng, Qixian
    Liu, Yong
    Wang, Ti
    Lin, Qianqian
    Wang, Zhiping
    NANO ENERGY, 2022, 103
  • [3] Inverted planar heterojunction perovskite solar cells with high ultraviolet stability
    Zhu, Xueliang
    Lau, Cho Fai Jonathan
    Mo, Kangwei
    Cheng, Siyang
    Xu, Yalun
    Li, Ruiming
    Wang, Cheng
    Zheng, Qixian
    Liu, Yong
    Wang, Ti
    Lin, Qianqian
    Wang, Zhiping
    NANO ENERGY, 2022, 103
  • [4] Additive engineering to improve the efficiency and stability of inverted planar perovskite solar cells
    Gao, Chenglin
    Dong, Hongzhou
    Bao, Xichang
    Zhang, Yongchao
    Saparbaev, Aziz
    Yu, Liyan
    Wen, Shuguang
    Yang, Renqiang
    Dong, Lifeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (30) : 8234 - 8241
  • [5] Influence of Deep States on The Photovoltaic Performance of Inverted Planar Perovskite Solar Cells
    Alotaibi, Maha Zayed
    Omer, Bushra Mohamed
    Alomairy, Sultan
    Merazga, Amar
    SIXTH SAUDI INTERNATIONAL MEETING ON FRONTIERS OF PHYSICS 2018 (SIMFP2018), 2018, 1976
  • [6] Improved Performance and Stability of Inverted Planar Perovskite Solar Cells Using Fulleropyrrolidine Layers
    Tian, Chengbo
    Castro, Edison
    Wang, Tan
    Betancourt-Solis, German
    Rodriguez, Gloria
    Echegoyen, Luis
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 31426 - 31432
  • [7] A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability
    Tian, Chengbo
    Kochiss, Kevin
    Castro, Edison
    Betancourt-Solis, German
    Han, Hongwei
    Echegoyen, Luis
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (16) : 7326 - 7332
  • [8] 8-Hydroxyquinoline Metal Complexes as Cathode Interfacial Materials in Inverted Planar Perovskite Solar Cells
    Sun, Fulin
    Liang, Chunjun
    Zhang, Huimin
    Ji, Chao
    Song, Qi
    Gong, Hongkang
    Li, Dan
    You, Fangtian
    He, Zhiqun
    ADVANCED MATERIALS INTERFACES, 2021, 8 (16)
  • [9] Enhanced photovoltage for inverted planar heterojunction perovskite solar cells
    Luo, Deying
    Yang, Wenqiang
    Wang, Zhiping
    Sadhanala, Aditya
    Hu, Qin
    Su, Rui
    Shivanna, Ravichandran
    Trindade, Gustavo F.
    Watts, John F.
    Xu, Zhaojian
    Liu, Tanghao
    Chen, Ke
    Ye, Fengjun
    Wu, Pan
    Zhao, Lichen
    Wu, Jiang
    Tu, Yongguang
    Zhang, Yifei
    Yang, Xiaoyu
    Zhang, Wei
    Friend, Richard H.
    Gong, Qihuang
    Snaith, Henry J.
    Zhu, Rui
    SCIENCE, 2018, 360 (6396) : 1442 - 1446
  • [10] Enhanced Efficiency and Stability of Inverted Planar Perovskite Solar Cells With Piperazine as an Efficient Dopant Into PCBM
    He, Yue
    Yao, Yifeng
    Li, Shiqi
    Sun, Qinjun
    Wu, Yukun
    Liu, Yifan
    Li, Zhanfeng
    Cui, Yanxia
    Ma, Changqi
    Hao, Yuying
    Wu, Yucheng
    IEEE JOURNAL OF PHOTOVOLTAICS, 2020, 10 (03): : 811 - 817