LOCAL ATLAS SELECTION FOR DISCRETE MULTI-ATLAS SEGMENTATION

被引:0
|
作者
Alchatzidis, Stavros [1 ,3 ]
Sotiras, Aristeidis [2 ]
Paragios, Nikos [1 ,3 ]
机构
[1] INRIA Saclay, Equipe GALEN, Orsay, France
[2] Univ Penn, Sect Biomed Image Anal, Philadelphia, PA 19104 USA
[3] Ecole Cent Paris, Chatenay Malabry, Ile De France, France
关键词
Multi-atlas; segmentation; medical imaging; discrete optimization; Markov Random Fields; REGISTRATION; STRATEGIES;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multi-atlas segmentation is commonly performed in two separate steps: i) multiple pairwise registrations, and ii) fusion of the deformed segmentation masks towards labeling objects of interest. In this paper we propose an approach for integrated volume segmentation through multi-atlas registration. To tackle this problem, we opt for a graphical model where registration and segmentation nodes are coupled. The aim is to recover simultaneously all atlas deformations along with selection masks quantifying the participation of each atlas per segmentation voxel. The above is modeled using a pairwise graphical model where deformation and segmentation variables are modeled explicitly. A sequential optimization relaxation is proposed for efficient inference. Promising performance is reported on the IBSR dataset when comparing to majority voting and local appearance-based weighted voting.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 50 条
  • [1] Atlas Ranking and Selection for Multi-Atlas Segmentation
    Yang, J.
    Beadle, B.
    Garden, A.
    Balter, P.
    Court, L.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [2] LOCAL ATLAS SELECTION AND PERFORMANCE ESTIMATION IN MULTI-ATLAS BASED SEGMENTATION
    Langerak, T. R.
    van der Heide, U. A.
    Kotte, A. N. T. J.
    Berendsen, F. F.
    Pluim, J. P. W.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 669 - 672
  • [3] Using Manifold Learning for Atlas Selection in Multi-Atlas Segmentation
    Duc, Albert K. Hoang
    Modat, Marc
    Leung, Kelvin K.
    Cardoso, M. Jorge
    Barnes, Josephine
    Kadir, Timor
    Ourselin, Sebastien
    PLOS ONE, 2013, 8 (08):
  • [4] GAS: A genetic atlas selection strategy in multi-atlas segmentation framework
    Antonelli, Michela
    Cardoso, M. Jorge
    Johnston, Edward W.
    Appayya, Mrishta Brizmohun
    Presles, Benoit
    Modat, Marc
    Punwani, Shonit
    Ourselin, Sebastien
    MEDICAL IMAGE ANALYSIS, 2019, 52 : 97 - 108
  • [5] Manifold Learning for Atlas Selection in Multi-atlas Based Segmentation of Hippocampus
    Duc, Albert K. Hoang
    Modat, Marc
    Leung, Kelvin K.
    Kadir, Timor
    Ourselin, Sebastien
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [6] Multi-atlas pancreas segmentation: Atlas selection based on vessel structure
    Karasawa, Ken'ichi
    Oda, Masahiro
    Kitasaka, Takayuki
    Misawa, Kazunari
    Fujiwara, Michitaka
    Chu, Chengwen
    Zheng, Guoyan
    Rueckert, Daniel
    Mori, Kensaku
    MEDICAL IMAGE ANALYSIS, 2017, 39 : 18 - 28
  • [7] A Fast Atlas Pre-selection Procedure for Multi-atlas Based Brain Segmentation
    Ma, Jingbo
    Ma, Heather T.
    Li, Hengtong
    Ye, Chenfei
    Wu, Dan
    Tang, Xiaoying
    Miller, Michael
    Mori, Susumu
    2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3053 - 3056
  • [8] A New Atlas Pre-selection Approach for Multi-atlas Based Brain Segmentation
    Li, Hengtong
    Ye, Chenfei
    Ma, Jingbo
    Mori, Susumu
    Ma, Heather T.
    INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2019, 64 : 153 - 154
  • [9] A Discrete MRF Framework for Integrated Multi-Atlas Registration and Segmentation
    Stavros Alchatzidis
    Aristeidis Sotiras
    Evangelia I. Zacharaki
    Nikos Paragios
    International Journal of Computer Vision, 2017, 121 : 169 - 181
  • [10] A Discrete MRF Framework for Integrated Multi-Atlas Registration and Segmentation
    Alchatzidis, Stavros
    Sotiras, Aristeidis
    Zacharaki, Evangelia I.
    Paragios, Nikos
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2017, 121 (01) : 169 - 181