Planar dual-cavity hot-electron photodetectors

被引:32
|
作者
Shao, Weijia [1 ,2 ,3 ,4 ]
Yang, Qianru [1 ,2 ,3 ,4 ]
Zhang, Cheng [1 ,2 ,3 ,4 ]
Wu, Shaolong [1 ,2 ,3 ,4 ]
Li, Xiaofeng [1 ,2 ,3 ,4 ]
机构
[1] Soochow Univ, Sch Optoelect Sci & Engn, Suzhou 215006, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Peoples R China
[3] Soochow Univ, Educ Minist China, Key Lab Adv Opt Mfg Technol Jiangsu Prov, Suzhou 215006, Peoples R China
[4] Soochow Univ, Educ Minist China, Key Lab Modern Opt Technol, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
INTERNAL PHOTOEMISSION; PERFECT ABSORBER; PHASE-TRANSITION; GENERATION; DRIVEN; DEVICE; ARRAY;
D O I
10.1039/c8nr05369c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hot-electron photodetectors (HE PDs) are attracting increasing interests. However, the nanostructured HE PDs are fabricated via complicated and costly techniques, while the planar counterparts can hardly achieve outstanding photon absorption and hot-electron collection simultaneously. To address the incompatibility in optical and electrical domains, herein, we propose an HE PD based on planar dual cavities (i.e., DC-HE PD) one each for photon absorption and triple Schottky junctions for carrier collection. Optoelectronic simulation demonstrates that the resonant wavelength and the absorption efficiency of the device can be manipulated conveniently by tailoring the planar thickness. Compared with the single-cavity system, the absorption efficiency of the DC-HE PD with the multi-junction configuration doubled (approximate to 100%) and the responsivity tripled (approximate to 2 mA W-1). The high-performance optoelectronic responses are shown to be sustained over a wide range of incident angles. The detailed physical property, namely, the coupled-cavity nature and the detailed analysis of the hot electron dynamics are presented.
引用
收藏
页码:1396 / 1402
页数:7
相关论文
共 50 条
  • [1] Five-layer planar hot-electron photodetectors at telecommunication wavelength of 1550 nm
    Shao, Weijia
    Hu, Junhui
    Wang, Yongmei
    OPTICS EXPRESS, 2022, 30 (14) : 25555 - 25566
  • [2] Plasmonic Photodetectors, Photovoltaics, and Hot-Electron Devices
    Brongersma, Mark L.
    PROCEEDINGS OF THE IEEE, 2016, 104 (12) : 2349 - 2361
  • [3] Hot-electron transport in quantum-dot photodetectors
    EE Department, 321 Bonner Hall, State University of New York, Buffalo, NY 14260, United States
    不详
    不详
    Int. J. High Speed Electron. Syst., 2008, 4 (1013-1022):
  • [4] Hot-electron optical modulator is compatible with silicon photodetectors
    不详
    LASER FOCUS WORLD, 2000, 36 (12): : 11 - +
  • [5] Planar Hot-Electron Photodetection with Tamm Plasmons
    Zhang, Cheng
    Wu, Kai
    Giannini, Vincenzo
    Li, Xiaofeng
    ACS NANO, 2017, 11 (02) : 1719 - 1727
  • [6] Planar narrowband Tamm plasmon-based hot-electron photodetectors with double distributed Bragg reflectors
    Shao, Weijia
    Liu, Tingting
    NANO EXPRESS, 2021, 2 (04):
  • [7] Infrared hot-electron NbN superconducting photodetectors for imaging applications
    Il'in, KS
    Verevkin, AA
    Gol'tsman, GN
    Sobolewski, R
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1999, 12 (11): : 755 - 758
  • [8] Infrared hot-electron NbN superconducting photodetectors for imaging applications
    Il'in, K.S.
    Verevkin, A.A.
    Gol'tsman, G.N.
    Sobolewski, Roman
    Superconductor Science and Technology, 1999, 12 (11): : 755 - 758
  • [9] Picosecond hot-electron energy relaxation in NbN superconducting photodetectors
    Il'in, KS
    Lindgren, M
    Currie, M
    Semenov, AD
    Gol'tsman, GN
    Sobolewski, R
    Cherednichenko, SI
    Gershenzon, EM
    APPLIED PHYSICS LETTERS, 2000, 76 (19) : 2752 - 2754
  • [10] Planar microcavity-integrated hot-electron photodetector
    Zhang, Cheng
    Wu, Kai
    Zhan, Yaohui
    Giannini, Vincenzo
    Li, Xiaofeng
    NANOSCALE, 2016, 8 (19) : 10323 - 10329