Higher recurrences for Apostol-Bernoulli-Euler numbers

被引:26
|
作者
Bayad, A. [2 ]
Kim, T. [1 ]
机构
[1] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
[2] Univ Evry Val dEssonne, Dept Math, F-91037 Evry, France
关键词
PRODUCTS; SUMS; IDENTITIES;
D O I
10.1134/S1061920812010013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present explicit formulas for sums of products of Apostol-Bernoulli and Apostol-Euler numbers of the form [GRAPHICS] where N and n are positive integers, B-m(q)stand for the Apostol-Bernoulli numbers, Em( q) for the Apostol- Euler numbers, and (M1, ... , mN) = n!/m1! ... , mN!. Our formulas involve Stirling numbers of the first kind. We also derive results for Apostol- Bernoulli and Apostol- Euler polynomials. As an application, for q = 1 we recover results of Dilcher, and our paper can be regarded as a q- extension of that of Dilcher.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条