Front instability and pattern dynamics in the phase-field model for crystal growth

被引:3
|
作者
Sakaguchi, H [1 ]
Tokunaga, S [1 ]
机构
[1] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Dept Appl Sci Elect & Mat, Kasuga, Fukuoka 8168580, Japan
关键词
pattern formation; Mullins-Sekerka instability; phase-field model;
D O I
10.1016/j.physd.2004.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study front instability and the pattern dynamics in the phase-field model with four-fold rotational symmetry. When the undercooling Delta is 1 < Delta < Delta(c) the flat interface is linearly unstable, and the deformation of the interface evolves to spatiotemporal chaos or nearly stationary cellular structures appear, depending on the growth direction. When A < 1, the flat interface grows with a power law x similar to t(1/2) and the growth rates of linear perturbations with finite wave number q decay to negative values. It implies that the flat interface is linearly stable as t -> infinity, if the width of the interface is finite. However, the perturbations around the flat interface actually grow since the linear growth rates take positive values for a long time, and the flat interface changes into an array of doublons or dendrites. The competitive dynamics among many dendrites is studied more in detail. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 50 条
  • [1] Dislocation dynamics and crystal plasticity in the phase-field crystal model
    Skaugen, Audun
    Angheluta, Luiza
    Vinals, Jorge
    PHYSICAL REVIEW B, 2018, 97 (05)
  • [2] A Modified Phase-Field Model for Polymer Crystal Growth
    Yang, Bin-xin
    Zhang, Chen-hui
    Wang, Fang
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2017, 30 (05) : 538 - 546
  • [3] Phase-Field Modeling of Step Dynamics on Growing Crystal Surface: Direct Integration of Growth Units to Step Front
    Miura, Hitoshi
    Kobayashi, Ryo
    CRYSTAL GROWTH & DESIGN, 2015, 15 (05) : 2165 - 2175
  • [4] Morphological instability of heteroepitaxial growth on vicinal substrates: A phase-field crystal study
    Yu, Yan-Mei
    Backofen, Rainer
    Voigt, Axel
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 18 - 22
  • [5] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    陈成
    陈铮
    张静
    杨涛
    杜秀娟
    Chinese Physics B, 2012, 21 (11) : 502 - 508
  • [6] Phase-Field Simulations of Crystal Growth
    Plapp, Mathis
    SELECTED TOPICS ON CRYSTAL GROWTH, 2010, 1270 : 247 - 254
  • [7] Faceting transitions in crystal growth and heteroepitaxial growth in the anisotropic phase-field crystal model
    Chen Cheng
    Chen Zheng
    Zhang Jing
    Yang Tao
    Du Xiu-Juan
    CHINESE PHYSICS B, 2012, 21 (11)
  • [8] Phase-field crystal model with a vapor phase
    Schwalbach, Edwin J.
    Warren, James A.
    Wu, Kuo-An
    Voorhees, Peter W.
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [9] Phase-field model of crystal grains
    Lobkovsky, AE
    Warren, JA
    JOURNAL OF CRYSTAL GROWTH, 2001, 225 (2-4) : 282 - 288
  • [10] Phase-field crystal model for heterostructures
    Hirvonen, Petri
    Heinonen, Vili
    Dong, Haikuan
    Fan, Zheyong
    Elder, Ken R.
    Ala-Nissila, Tapio
    PHYSICAL REVIEW B, 2019, 100 (16)