An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel heat sink with multiple zigzag flow channel structures
被引:68
|
作者:
Duangthongsuk, Weerapun
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Asia Univ, Dept Mech Engn, Bangkok, Thailand
King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok, ThailandSoutheast Asia Univ, Dept Mech Engn, Bangkok, Thailand
Duangthongsuk, Weerapun
[1
,2
]
Wongwises, Somchai
论文数: 0引用数: 0
h-index: 0
机构:
King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok, ThailandSoutheast Asia Univ, Dept Mech Engn, Bangkok, Thailand
Wongwises, Somchai
[2
]
机构:
[1] Southeast Asia Univ, Dept Mech Engn, Bangkok, Thailand
[2] King Mongkuts Univ Technol Thonburi, Fac Engn, Dept Mech Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok, Thailand
This research reports the thermal performance and flow characteristics of nanofluid flows in two different types of microchannel heat sink (MCHS) with multiple zigzag flow channel structures experimentally with regard to the continuous zigzag flow channel (CZ-HS) and the single cross-cutting zigzag flow channel (CCZ-HS). SiO2 nanoparticles with particle loadings of 0,3, 0.6, and 0.8 vol.% and dispersed in deionized water (DI water) are used as the working medium. Both CZ-HS and CCZ-HS are made from copper material. Their dimensions are approximately 28 x 33 mm. Hydraulic diameter and number of flow channels are equally designed as seven 1-mm flow channels, respectively. The heat transfer area of CZ-HS is approximately 1176 mm(2) and that of CCZ-HS is 1238 mm(2). The effects of single cross-cutting of the flow channel, Reynolds number, and particle concentration on the Nusselt number and pressure drop characteristics are investigated. The experimental data indicate that the nanofluid-cooled heat sink provided larger thermal performance than the heat sink cooled by water of approximately 3-15%. Similarly, the results indicated that the thermal performances of the CCZ-HS are larger than those of the CZ-HS by an average of 2-6%. For the pressure drop, the measured data showed that particle concentration and cross-cutting of the flow channel have a small effect on the pressure-drop data. (C) 2017 Published by Elsevier Inc.
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
Tang, Xiaoyu
Xu, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
Xu, Qiang
Yu, Haoyuan
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
Yu, Haoyuan
Pei, Chenyu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
Pei, Chenyu
Guo, Liejin
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China