Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport

被引:187
|
作者
He, QiZhi [1 ]
Barajas-Solano, David [1 ]
Tartakovsky, Guzel [2 ]
Tartakovsky, Alexandre M. [1 ]
机构
[1] Pacific Northwest Natl Lab, Richland, WA 99354 USA
[2] INTERA Inc, Richland, WA 99354 USA
关键词
Physics-informed deep neural networks; Data assimilation; Parameter estimation; Inverse problems; Subsurface flow and transport; GROUNDWATER; FLOW; ALGORITHM;
D O I
10.1016/j.advwatres.2020.103610
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Data assimilation for parameter and state estimation in subsurface transport problems remains a significant challenge because of the sparsity of measurements, the heterogeneity of porous media, and the high computational cost of forward numerical models. We present a multiphysics-informed deep neural network machine learning method for estimating space-dependent hydraulic conductivity, hydraulic head, and concentration fields from sparse measurements. In this approach, we employ individual deep neural networks (DNNs) to approximate the unknown parameters (e.g., hydraulic conductivity) and states (e.g., hydraulic head and concentration) of a physical system. Next, we jointly train these DNNs by minimizing the loss function that consists of the governing equations residuals in addition to the error with respect to measurement data. We apply this approach to assimilate conductivity, hydraulic head, and concentration measurements for the joint inversion of these parameter and states in a steady-state advection-dispersion problem. We study the accuracy of the proposed data assimilation approach with respect to the data size (i.e., the number of measured variables and the number of measurements of each variable), DNN size, and the complexity of the parameter field. We demonstrate that the physics-informed DNNs are significantly more accurate than the standard data-driven DNNs, especially when the training set consists of sparse data. We also show that the accuracy of parameter estimation increases as more different multiphysics variables are inverted jointly.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Randomized physics-informed neural networks for Bayesian data assimilation
    Zong, Yifei
    Barajas-Solano, David
    Tartakovsky, Alexandre M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2025, 436
  • [2] Mean flow data assimilation based on physics-informed neural networks
    von Saldern, Jakob G. R.
    Reumschuessel, Johann Moritz
    Kaiser, Thomas L.
    Sieber, Moritz
    Oberleithner, Kilian
    PHYSICS OF FLUIDS, 2022, 34 (11)
  • [3] A framework of data assimilation for wind flow fields by physics-informed neural networks
    Yan, Chang
    Xu, Shengfeng
    Sun, Zhenxu
    Lutz, Thorsten
    Guo, Dilong
    Yang, Guowei
    APPLIED ENERGY, 2024, 371
  • [4] Assimilation of statistical data into turbulent flows using physics-informed neural networks
    Angriman, Sofia
    Cobelli, Pablo
    Mininni, Pablo D.
    Obligado, Martin
    Di Leoni, Patricio Clark
    EUROPEAN PHYSICAL JOURNAL E, 2023, 46 (03):
  • [5] Assimilation of statistical data into turbulent flows using physics-informed neural networks
    Sofía Angriman
    Pablo Cobelli
    Pablo D. Mininni
    Martín Obligado
    Patricio Clark Di Leoni
    The European Physical Journal E, 2023, 46
  • [6] Multiphysics generalization in a polymerization reactor using physics-informed neural networks
    Ryu, Yubin
    Shin, Sunkyu
    Lee, Won Bo
    Na, Jonggeol
    CHEMICAL ENGINEERING SCIENCE, 2024, 298
  • [7] The application of physics-informed neural networks to hydrodynamic voltammetry
    Chen, Haotian
    Kaetelhoen, Enno
    Compton, Richard G.
    ANALYST, 2022, 147 (09) : 1881 - 1891
  • [8] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)
  • [9] Physics-Informed Neural Networks for System Identification of Structural Systems with a Multiphysics Damping Model
    Liu, Tong
    Meidani, Hadi
    JOURNAL OF ENGINEERING MECHANICS, 2023, 149 (10)
  • [10] Bayesian Physics-Informed Neural Networks for the Subsurface Tomography Based on the Eikonal Equation
    Gou, Rongxi
    Zhang, Yijie
    Zhu, Xueyu
    Gao, Jinghuai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61