We present several inequalities related to the Robertson-Schrodinger uncertainty relation. In all these inequalities, we consider a decomposition of the density matrix into a mixture of states, and use the fact that the Robertson-Schrodinger uncertainty relation is valid for all these components. By considering a convex roof of the bound, we obtain an alternative derivation of the relation in Frowis et al. [Phys. Rev. A 92, 012102 (2015)], and we can also list a number of conditions that are needed to saturate the relation. We present a formulation of the Cramer-Rao bound involving the convex roof of the variance. By considering a concave roof of the bound in the Robertson-Schrodinger uncertainty relation over decompositions to mixed states, we obtain an improvement of the Robertson-Schrodinger uncertainty relation. We consider similar techniques for uncertainty relations with three variances. Finally, we present further uncertainty relations that provide lower bounds on the metrological usefulness of bipartite quantum states based on the variances of the canonical position and momentum operators for two-mode continuous variable systems. We show that the violation of well known entanglement conditions in these systems discussed in Duan et al. [Phys. Rev. Lett. 84, 2722 (2000)] and Simon [Phys. Rev. Lett. 84, 2726 (2000)] implies that the state is more useful metrologically than certain relevant subsets of separable states. We present similar results concerning entanglement conditions with angular momentum operators for spin systems.
机构:
Zhejiang Institute of Modern Physics,Department of Physics,Zhejiang UniversityZhejiang Institute of Modern Physics,Department of Physics,Zhejiang University
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Luo, Shunlong
Sun, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210023, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China