OVERHEAD CRANE ANTI-SWING SYSTEM BASED ON THE PONTRYAGIN'S MAXIMUM PRINCIPLE

被引:4
|
作者
Spruogis, Bronislovas [1 ]
Jakstas, Arunas [2 ]
Gican, Vladimir [3 ]
Turla, Vytautas [3 ]
机构
[1] Vilnius Gediminas Tech Univ, Dept Transport Technol Equipment, Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, Dept Engn Mech, Vilnius, Lithuania
[3] Vilnius Gediminas Tech Univ, Dept Printing Machines, Vilnius, Lithuania
关键词
overhead crane; anti-swing system; Pontryagin's principle; dynamics; stability;
D O I
10.3846/16484142.2015.1020872
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Overhead cranes are widely used at industrial enterprises for transportation of materials and products. They are successfully adaptable to technological processes used at an enterprise and their exploitation is inexpensive; in addition, the price of cranes is relatively low. However, extension of requirements set for technological processes results in shortened time for transportation and stiffened requirements for accuracy of cargo delivery and cargo safety. In the attempts to satisfy the latter requirements, particular attention is paid to swings of the cargo-holding rope. There is a number of factors that cause increased requirements for the control system of the crane drive. The slewing movement affects the total system of the crane and aggravates the crane movement control. In modern overhead cranes, the abilities and qualification of an operator (who is assisted by a certain anti-swing system) predetermine the cargo swings and the accuracy of its positioning. The said circumstance latterly caused a particular attention to computerisation of overhead crane control. However, a nonlinearity of the mechanical system of a crane and complicated control of swings often cause undesirable swings, in particular in the beginning and the end of cargo transporting process, thus reducing the efficiency of usual crane control systems. In addition, it should be taken into account that the parameters of a crane, as a controlled mechanical system, depend on the cargo and the conditions of its transportation. Consequently, a development of an effective cargo swing reduction system is a currently topical engineering problem.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 50 条
  • [1] ANTI-SWING TRAJECTORY CONTROL OF AN OVERHEAD CRANE
    Fung, E. H. K.
    Yu, H. F.
    Suen, K. H.
    Leung, A. T.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B, 2012, : 1311 - 1319
  • [2] Anti-swing control for overhead crane with neural compensation
    Toxqui, Rigoberto
    Yu, Wen
    Li, Xiaoou
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 4697 - +
  • [3] Anti-swing Switching Control for Overhead Container Crane
    Zhai Junyong
    Chen Xisong
    Fei Shumin
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 3812 - 3815
  • [4] ANTI-SWING CONTROL FOR AN OVERHEAD CRANE WITH FUZZY COMPENSATION
    Li, Xiaoou
    Yu, Wen
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2012, 18 (01): : 1 - 11
  • [5] Anti-swing and positioning control of overhead traveling crane
    Yi, JQ
    Yubazaki, N
    Hirota, K
    INFORMATION SCIENCES, 2003, 155 (1-2) : 19 - 42
  • [6] Anti-swing fuzzy control of overhead traveling crane
    Yi, JQ
    Yubazaki, N
    Hirota, K
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1298 - 1303
  • [7] Anti-swing Control of Overhead Crane Based on Double Fuzzy Controllers
    Wang, Lifu
    Zhang, Hongbo
    Kong, Zhi
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 981 - 986
  • [8] Anti-swing Design of an Overhead Crane based on Optimal Preview Control
    Li, Ruiji
    Tang, Weiqiang
    Gao, Haiyan
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 2532 - 2536
  • [9] An anti-swing control of a 3-dimensional overhead crane
    Cho, SK
    Lee, HH
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 1037 - 1041
  • [10] A novel anti-swing and position control method for overhead crane
    Shao, Xuejuan
    Zhang, Jinggang
    Zhang, Xueliang
    Zhao, Zhicheng
    Chen, Zhimei
    SCIENCE PROGRESS, 2020, 103 (01)