LPVcore: MATLAB Toolbox for LPV Modelling, Identification and Control

被引:12
|
作者
den Boef, Pascal [1 ]
Cox, Pepijn B. [4 ]
Toth, Roland [2 ,3 ]
机构
[1] Drebble, Horsten 1, NL-5612 AX Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Control Syst Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[3] Inst Comp Sci & Control, Syst & Control Lab, Kende U 13-17, H-1111 Budapest, Hungary
[4] TNO, Radar Technol, POB 96864, NL-2509 JG The Hague, Netherlands
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
欧洲研究理事会;
关键词
Linear parameter-varying systems; software tools; system identification;
D O I
10.1016/j.ifaco1.2021.08.390
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the LPVcottE software package for MATLAB developed to model, simulate, estimate and control systems via linear parameter-varying (LPV) input-output (JO), state-space (SS) and linear fractional (LFR) representations. In the LPVcottE toolbox, basis affine parameter-varying matrix functions are implemented to enable users to represent LPV systems in a global setting, i.e., for time-varying scheduling trajectories. This is a key difference compared to other software suites that use a grid or only LFR-based representations. The paper contains an overview of functions in the toolbox to simulate and identify JO, SS and LFR representations. Based on various prediction-error minimization methods, a comprehensive example is given on the identification of a DC motor with an unbalanced disc, demonstrating the capabilities of the toolbox. The software and examples are available on www. 1pvcore. net. Copyright CO (C) 2021 The Authors.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [1] Flow control process identification using Matlab's System Identification Toolbox
    Assani, Nur
    Matic, Petar
    Kezic, Danko
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 1228 - 1232
  • [2] Developments for the System Identification toolbox for MATLAB
    Ljung, L
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 927 - 929
  • [3] Nonparametric System Identification Matlab Toolbox
    Mzyk, Grzegorz
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 691 - 698
  • [4] Signal processing using matlab and control toolbox for linear electrical machine modelling
    Xiang, J
    Baker, NJ
    Mueller, MA
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 148 - 151
  • [5] A robot control toolbox for MATLAB/SIMULINK
    Valera, A
    Tornero, J
    Salt, JJ
    ESM'99 - MODELLING AND SIMULATION: A TOOL FOR THE NEXT MILLENNIUM, VOL 1, 1999, : 260 - 264
  • [6] Robotic Control & Visualization Toolbox for MATLAB
    Pawletta, T.
    Freymann, B.
    Deatcu, C.
    Schmidt, A.
    IFAC PAPERSONLINE, 2015, 48 (01): : 687 - +
  • [7] The QFT control design toolbox for MATLAB
    Yaniv, O
    Chait, Y
    Borghesani, C
    ROBUST CONTROL DESIGN (ROCODN'97): A PROCEEDINGS VOLUME FROM THE IFAC SYMPOSIUM, 1997, : 103 - 108
  • [8] A Matlab toolbox for teaching modern system identification methods for industrial process control
    Burn K.
    Maerte L.
    Cox C.
    International Journal of Mechanical Engineering Education, 2010, 38 (04) : 352 - 364
  • [9] The NNSYSID toolbox - A MATLAB(R) toolbox for system identification with neural networks
    Norgaard, M
    Ravn, O
    Hansen, LK
    Poulsen, NK
    PROCEEDINGS OF THE 1996 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-AIDED CONTROL SYSTEM DESIGN, 1996, : 374 - 379
  • [10] Online Features in the MATLAB® System Identification Toolbox™
    Ljung, Lennart
    Ozdemir, Ahmet Arda
    Singh, Rajiv
    IFAC PAPERSONLINE, 2018, 51 (15): : 700 - 705