ERROR ESTIMATES OF STOCHASTIC OPTIMAL NEUMANN BOUNDARY CONTROL PROBLEMS

被引:52
|
作者
Gunzburger, Max D. [1 ]
Lee, Hyung-Chun [2 ]
Lee, Jangwoon [3 ]
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] Ajou Univ, Dept Math, Suwon 443749, South Korea
[3] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
基金
新加坡国家研究基金会;
关键词
stochastic optimal control; finite element method; Karhunen-Loeve expansion; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES EQUATIONS; DIMENSIONAL APPROXIMATION; ELLIPTIC PROBLEMS;
D O I
10.1137/100801731
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study mathematically and computationally optimal control problems for stochastic partial differential equations with Neumann boundary conditions. The control objective is to minimize the expectation of a cost functional, and the control is of the deterministic, boundary-value type. Mathematically, we prove the existence of an optimal solution and of a Lagrange multiplier; we represent the input data in terms of their Karhunen-Loeve expansions and deduce the deterministic optimality system of equations. Computationally, we approximate the finite element solution of the optimality system and estimate its error through the discretizations with respect to both spatial and random parameter spaces.
引用
收藏
页码:1532 / 1552
页数:21
相关论文
共 50 条
  • [1] Error estimates for Neumann boundary control problems with energy regularization
    Apel, Thomas
    Steinbach, Olaf
    Winkler, Max
    JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (04) : 207 - 233
  • [2] Finite element error estimates for Neumann boundary control problems on graded meshes
    Apel, Thomas
    Pfefferer, Johannes
    Roesch, Arnd
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (01) : 3 - 28
  • [3] Finite element error estimates for Neumann boundary control problems on graded meshes
    Thomas Apel
    Johannes Pfefferer
    Arnd Rösch
    Computational Optimization and Applications, 2012, 52 : 3 - 28
  • [4] A Posteriori Error Estimates for Boundary Parabolic Optimal Control Problems
    Lu, Z.
    Liu, D.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2014, 35 (02) : 92 - 105
  • [5] Error estimates for the postprocessing approach applied to Neumann boundary control problems in polyhedral domains
    Apel, Thomas
    Winkler, Max
    Pfepperer, Johannes
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1984 - 2025
  • [6] Error estimates for the numerical approximation of Neumann control problems
    Casas, Eduardo
    Mateos, Mariano
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 39 (03) : 265 - 295
  • [7] Error estimates for the numerical approximation of Neumann control problems
    Eduardo Casas
    Mariano Mateos
    Computational Optimization and Applications, 2008, 39 : 265 - 295
  • [8] Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
    Zuliang Lu
    Shuhua Zhang
    Chuanjuan Hou
    Hongyan Liu
    Boundary Value Problems, 2016
  • [9] Residual-based a posteriori error estimates for hp finite element solutions of semilinear Neumann boundary optimal control problems
    Lu, Zuliang
    Zhang, Shuhua
    Hou, Chuanjuan
    Liu, Hongyan
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 18
  • [10] Error estimates for the logarithmic barrier method in linear quadratic stochastic optimal control problems
    Bonnans, J. Frederic
    Silva, Francisco J.
    SYSTEMS & CONTROL LETTERS, 2012, 61 (01) : 143 - 147