Parameter identification of interior permanent magnet synchronous based on local search-based hybrid genetic algorithm

被引:1
|
作者
Zhu, Yilin [1 ]
Chen, Qi [1 ]
Li, Kun [1 ]
Yang, Wei [1 ]
Huang, Yun [1 ]
机构
[1] Jiangsu Changjiang Intelligent Mfg Res Inst Co Lt, Changzhou 213001, Peoples R China
关键词
Interior permanent magnet synchronous motor; parameter identification; genetic algorithm; hill-climbing method;
D O I
10.1080/09205071.2021.2022004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A hybrid genetic algorithm (Is-hGA) parameter identification method based on local search was proposed to solve the anti-salient characteristics of interior permanent magnet synchronous motor (IPMSM) and the defects of traditional genetic algorithm (GA) parameter identification method. In this hybrid optimization method, genetic algorithm is used for global search and hill-climbing algorithm is used for local search. This can not only improve the poor local search ability of genetic algorithm, but also greatly save calculation time. This method can identify four parameters of stator resistance, d-q axis inductance and permanent magnet flux linkage simultaneously. The performance of traditional GA and proposed Is-hGA in IPMSM parameter identification is compared by constructing an experimental platform. As a result, the proposed method can have more accurate identification precise.
引用
收藏
页码:1311 / 1322
页数:12
相关论文
共 50 条
  • [2] Parameter Identification of Permanent Magnet Synchronous Motor Based on CGCRAO Algorithm
    Li, Hongji
    Jian, Xianzhong
    IEEE ACCESS, 2023, 11 : 124319 - 124330
  • [3] Parameter identification of synchronous machine based on a hybrid genetic algorithm
    Ni, Liang-Hua
    Li, Xian-Yun
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2010, 38 (01): : 51 - 55
  • [4] Parameter identification for interior permanent-magnet synchronous motor
    Senjyu, Tomonobu
    Noguchi, Yohei
    Urasaki, Naomitsu
    Yona, Atsushi
    Sekine, Hideomi
    2007 INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS, VOLS 1-4, 2007, : 453 - +
  • [5] Offline Parameter Identification of Interior Permanent Magnet Synchronous Motor Based on Current Norm Characteristics
    Ji, Xiang
    Noguchi, Toshihiko
    IEEJ JOURNAL OF INDUSTRY APPLICATIONS, 2015, 4 (05) : 568 - 573
  • [6] Application of a Hybrid Genetic Algorithm for Optimal Design of Interior Permanent Magnet Synchronous Machines
    Wang, Aimeng
    Wen, Yun
    Soong, Wen L.
    Li, Huiqi
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [7] Parameter identification of permanent magnet synchronous motor based on modified bacterial foraging algorithm
    Bian Q.
    Ma J.
    Zhang M.
    Wang J.
    Dianji yu Kongzhi Xuebao/Electric Machines and Control, 2024, 28 (02): : 174 - 181
  • [8] Online Parameter Identification for Model-Based Sensorless Control of Interior Permanent Magnet Synchronous Machine
    Rafaq, Muhammad Saad
    Mwasilu, Francis
    Kim, Jinuk
    Choi, Han Ho
    Jung, Jin-Woo
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (06) : 4631 - 4643
  • [9] Deadbeat Control of Permanent Magnet Synchronous Motorized Spindle Based on Improved Parameter Identification Algorithm
    Zhou, Dazuo
    Wang, Xin
    Progress in Electromagnetics Research C, 2025, 153 : 81 - 86
  • [10] Parameter Identification of Permanent Magnet Synchronous Machine based on Metaheuristic Optimization
    Balamurali, Aiswarya
    Mollaeian, Aida
    Sangdehi, Seyed Mousavi
    Kar, Narayan C.
    2015 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2015, : 1729 - 1734