Effective Approximation Method for Nanogratings-induced Near-Field Radiative Heat Transfer

被引:4
|
作者
Liu, Yang [1 ]
Chen, Fangqi [1 ]
Caratenuto, Andrew [1 ]
Tian, Yanpei [1 ]
Liu, Xiaojie [1 ]
Zhao, Yitong [2 ]
Zheng, Yi [1 ]
机构
[1] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[2] Calif State Polytech Univ Pomona, Dept Mech Engn, Pomona, CA 91768 USA
基金
美国国家科学基金会;
关键词
near-field radiative heat transfer; effective approximation NFRHT method; effective medium theory; nanostructures; GRATINGS;
D O I
10.3390/ma15030998
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanoscale radiative thermal transport between a pair of metamaterial gratings is studied within this work. The effective medium theory (EMT), a traditional method to calculate the near-field radiative heat transfer (NFRHT) between nanograting structures, does not account for the surface pattern effects of nanostructures. Here, we introduce the effective approximation NFRHT method that considers the effects of surface patterns on the NFRHT. Meanwhile, we calculate the heat flux between a pair of silica (SiO2) nanogratings with various separation distances, lateral displacements, and grating heights with respect to one another. Numerical calculations show that when compared with the EMT method, here the effective approximation method is more suitable for analyzing the NFRHT between a pair of relatively displaced nanogratings. Furthermore, it is demonstrated that compared with the result based on the EMT method, it is possible to realize an inverse heat flux trend with respect to the nanograting height between nanogratings without modifying the vacuum gap calculated by this effective approximation NFRHT method, which verifies that the NFRHT between the side faces of gratings greatly affects the NFRHT between a pair of nanogratings. By taking advantage of this effective approximation NFRHT method, the NFRHT in complex micro/nano-electromechanical devices can be accurately predicted and analyzed.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Perspective on near-field radiative heat transfer
    Pascale, Mariano
    Giteau, Maxime
    Papadakis, Georgia T.
    APPLIED PHYSICS LETTERS, 2023, 122 (10)
  • [2] A near-field radiative heat transfer device
    DeSutter, John
    Tang, Lei
    Francoeur, Mathieu
    NATURE NANOTECHNOLOGY, 2019, 14 (08) : 751 - +
  • [3] A near-field radiative heat transfer device
    John DeSutter
    Lei Tang
    Mathieu Francoeur
    Nature Nanotechnology, 2019, 14 : 751 - 755
  • [4] Near-Field Radiative Heat Transfer Eigenmodes
    Sanders, Stephen
    Zundel, Lauren
    Kort-Kamp, Wilton J. M.
    Dalvit, Diego A. R.
    Manjavacas, Alejandro
    PHYSICAL REVIEW LETTERS, 2021, 126 (19)
  • [5] Dynamic measurement of near-field radiative heat transfer
    S. Lang
    G. Sharma
    S. Molesky
    P. U. Kränzien
    T. Jalas
    Z. Jacob
    A. Yu. Petrov
    M. Eich
    Scientific Reports, 7
  • [6] Dynamic measurement of near-field radiative heat transfer
    Lang, S.
    Sharma, G.
    Molesky, S.
    Kraenzien, P. U.
    Jalas, T.
    Jacob, Z.
    Petrov, A. Yu.
    Eich, M.
    SCIENTIFIC REPORTS, 2017, 7
  • [7] Near-field radiative heat transfer in hyperbolic materials
    Liu, Ruiyi
    Zhou, Chenglong
    Zhang, Yong
    Cui, Zheng
    Wu, Xiaohu
    Yi, Hongliang
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2022, 4 (03)
  • [8] Near-field radiative heat transfer in mesoporous alumina
    Li Jing
    Feng Yan-Hui
    Zhang Xin-Xin
    Huang Cong-Liang
    Wang Ge
    CHINESE PHYSICS B, 2015, 24 (01)
  • [9] Near-field radiative heat transfer in mesoporous alumina
    李静
    冯妍卉
    张欣欣
    黄丛亮
    王戈
    ChinesePhysicsB, 2015, 24 (01) : 342 - 348
  • [10] Near-field radiative heat transfer for structured surfaces
    Biehs, Svend-Age
    Huth, Oliver
    Rueting, Felix
    PHYSICAL REVIEW B, 2008, 78 (08):