A numerical method of structure-preserving model updating problem and its perturbation theory (vol 217, pg 6364, 2011)

被引:0
|
作者
Xie, Dongxiu [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Sci, Beijing 100192, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
关键词
D O I
10.1016/j.amc.2012.03.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:10007 / 10007
页数:1
相关论文
共 6 条
  • [1] A numerical method of structure-preserving model updating problem and its perturbation theory
    Xie, Dongxiu
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (13) : 6364 - 6371
  • [2] A structure-preserving iteration method of model updating based on matrix approximation theory
    Xie, Dongxiu
    COMPUTATIONAL & APPLIED MATHEMATICS, 2010, 29 (02): : 173 - 194
  • [3] Application of the Alternating Direction Method for the Structure-Preserving Finite Element Model Updating Problem
    Baocan ZHANG
    JournalofMathematicalResearchwithApplications, 2020, 40 (02) : 196 - 208
  • [4] A perturbation bound on a class of dynamical model updating problem and a method of keeping its sparse structure
    Xie, Dongxiu
    Huang, Ningjun
    Wang, Aiwen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 : 300 - 307
  • [5] Structure-preserving numerical method for Maxwell-Ampere Nernst-Planck model
    Qiao, Zhonghua
    Xu, Zhenli
    Yin, Qian
    Zhou, Shenggao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 475
  • [6] A Linearized Structure-Preserving Numerical Scheme for a Gradient Flow Model of the Kohn-Sham Density Functional Theory
    Hu, Guanghui
    Wang, Ting
    Zhou, Jie
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2023, 13 (02) : 299 - 319