Image Classification in HTP Test Based on Convolutional Neural Network Model

被引:3
|
作者
Liu, Lin [1 ]
机构
[1] Wuhan Univ Technol, Sch Art & Design, Wuhan 430070, Hubei, Peoples R China
关键词
Deep learning - Image classification - Image recognition - Learning systems - Classification (of information) - Testing - Network layers - Diagnosis - Convolution;
D O I
10.1155/2021/6370509
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
HTP test in psychometrics is a widely studied and applied psychological assessment technique. HTP test is a kind of projection test, which refers to the free expression of painting itself and its creativity. Therefore, the form of group psychological counselling is widely used in mental health education. Compared with traditional neural networks, deep learning networks have deeper and more network layers and can learn more complex processing functions. In this stage, image recognition technology can be used as an assistant of human vision. People can quickly get the information in the picture through retrieval. For example, you can take a picture of an object that is difficult to describe and quickly search the content related to it. Convolutional neural network, which is widely used in the image classification task of computer vision, can automatically complete feature learning on the data without manual feature extraction. Compared with the traditional test, the test can reflect the painting characteristics of different groups. After quantitative scoring, it has good reliability and validity. It has high application value in psychological evaluation, especially in the diagnosis of mental diseases. This paper focuses on the subjectivity of HTP evaluation. Convolutional neural network is a mature technology in deep learning. The traditional HTP assessment process relies on the experience of researchers to extract painting features and classification.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Image Classification Based on Convolutional Neural Network
    Prassanna, P. Lakshmi
    Sandeep, S.
    Rao, Kantha
    Sasidhar, T.
    Lavanya, D. Ragava
    Deepthi, G.
    SriLakshmi, N. Vijaya
    Mounika, P.
    Govardhani, U.
    SUSTAINABLE COMMUNICATION NETWORKS AND APPLICATION, ICSCN 2021, 2022, 93 : 833 - 842
  • [2] Gastrointestinal Image Classification based on Convolutional Neural Network
    Wang, Shuo
    Gao, Pengfei
    Peng, Hui
    2021 8TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS RESEARCH AND APPLICATIONS, ICBRA 2021, 2021, : 42 - 48
  • [3] Convolutional Neural Network Based Chart Image Classification
    Amara, Jihen
    Kaur, Pawandeep
    Owonibi, Michael
    Bouaziz, Bassem
    25. INTERNATIONAL CONFERENCE IN CENTRAL EUROPE ON COMPUTER GRAPHICS, VISUALIZATION AND COMPUTER VISION (WSCG 2017), 2017, 2701 : 83 - 88
  • [4] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48
  • [5] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [6] CT image classification based on convolutional neural network
    Zhang, Yuezhong
    Wang, Shi
    Zhao, Honghua
    Guo, Zhenhua
    Sun, Dianmin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8191 - 8200
  • [7] Image Classification Based on the Boost Convolutional Neural Network
    Lee, Shin-Jye
    Chen, Tonglin
    Yu, Lun
    Lai, Chin-Hui
    IEEE ACCESS, 2018, 6 : 12755 - 12768
  • [8] CT image classification based on convolutional neural network
    Yuezhong Zhang
    Shi Wang
    Honghua Zhao
    Zhenhua Guo
    Dianmin Sun
    Neural Computing and Applications, 2021, 33 : 8191 - 8200
  • [9] A Stock Selection Model of Image Classification Method Based on Convolutional Neural Network
    Li, Pengfei
    Xu, Jungang
    Li, Keyao
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [10] Image classification based on multi-granularity convolutional Neural network model
    Wu, Xiaogang
    Tanprasert, Thitipong
    Jing, Wang
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,