Measurement Error and the Specification of the Weights Matrix in Spatial Regression Models

被引:2
|
作者
Vande Kamp, Garrett N. [1 ]
机构
[1] Texas A&M Univ, Bush Sch Govt & Publ Serv, 4348 TAMU, College Stn, TX 77843 USA
关键词
spatial regression; spatial autocorrelation; measurement error; time series cross-section data;
D O I
10.1017/pan.2019.35
中图分类号
D0 [政治学、政治理论];
学科分类号
0302 ; 030201 ;
摘要
While the spatial weights matrix boldsymbol W is at the core of spatial regression models, there is a scarcity of techniques for validating a given specification of boldsymbol W. I approach this problem from a measurement error perspective. When boldsymbol W is inflated by a constant, a predictable form of endogeneity occurs that is not problematic in other regression contexts. I use this insight to construct a theoretically appealing test and control for the validity of boldsymbol W that is tractable in panel data, which I call the K test. I demonstrate the utility of the test using Monte Carlo simulations.
引用
收藏
页码:284 / 292
页数:9
相关论文
共 50 条
  • [1] Specification of spatial models: A simulation study on weights matrices
    Stakhovych, Stanislav
    Bijmolt, Tammo H. A.
    PAPERS IN REGIONAL SCIENCE, 2009, 88 (02) : 389 - 408
  • [2] Simplex regression models with measurement error
    Carrasco, Jalmar M. F.
    Reid, Nancy
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) : 3420 - 3435
  • [3] TESTING SEPARATE REGRESSION-MODELS SUBJECT TO SPECIFICATION ERROR
    MCALEER, M
    FISHER, G
    JOURNAL OF ECONOMETRICS, 1982, 19 (01) : 125 - 145
  • [4] A double fixed rank kriging approach to spatial regression models with covariate measurement error
    Ning, Xu
    Hui, Francis K. C.
    Welsh, Alan H.
    ENVIRONMETRICS, 2023, 34 (01)
  • [5] Sequential regression measurement error models with application
    Moffatt, Joanne L.
    Scarf, Phil
    STATISTICAL MODELLING, 2016, 16 (06) : 454 - 476
  • [6] Restricted regression estimation in measurement error models
    Shalabh
    Garg, Gaurav
    Misra, Neeraj
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 52 (02) : 1149 - 1166
  • [7] Null intercept measurement error regression models
    Reiko Aoki
    Hereno Bolfarine
    Julio M. Singer
    Test, 2001, 10 : 441 - 457
  • [8] Null intercept measurement error regression models
    Aoki, R
    Bolfarine, H
    Singer, JM
    TEST, 2001, 10 (02) : 441 - 457
  • [9] Spatial weights matrix selection and model averaging for spatial autoregressive models
    Zhang, Xinyu
    Yu, Jihai
    JOURNAL OF ECONOMETRICS, 2018, 203 (01) : 1 - 18
  • [10] COMPARISON OF CORRELATIONS, VARIANCES, COVARIANCES, AND REGRESSION WEIGHTS WITH OR WITHOUT MEASUREMENT ERROR
    WERTS, CE
    ROCK, DA
    LINN, RL
    JORESKOG, KG
    PSYCHOLOGICAL BULLETIN, 1976, 83 (06) : 1007 - 1013