A numerical bifurcation function for homoclinic orbits

被引:3
|
作者
Ashwin, P
Mei, Z
机构
[1] Inst Nonlineaire Nice, F-06560 Valbonne, France
[2] Univ Marburg, Fachbereich Math, D-35032 Marburg, Germany
关键词
periodic solutions; homoclinic orbit; numerical bifurcation function;
D O I
10.1137/S0036142996298168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a numerical method to locate periodic orbits near homoclinic orbits. Using a method of [X.-B. Lin, Proc. Roy. Soc. Edinburgh, 116A (1990), pp. 295-325] and solutions of the adjoint variational equation, we get a bifurcation function for periodic orbits, whose periods are asymptotic to infinity on approaching a homoclinic orbit. As a bonus, a linear predictor for continuation of the homoclinic orbit is easily available. Numerical approximation of the homoclinic orbit and the solution of the adjoint variational equation are discussed. We consider a class of methods for approximating the latter equation such that a scalar quantity is preserved. We also consider a context where the effects of continuous symmetries of equations can be incorporated. Applying the method to an ordinary differential equation on R-3 studied by [E. Freire, A. Rodriguez-Luis, and E. Ponce, Phys. D, 62 (1993), pp. 230-253] we show the bifurcation function gives good agreement with path-followed solutions even down to low period. As an example application to a parabolic partial differential equation (PDE), we examine the bifurcation function for a homoclinic orbit in the Kuramoto-Sivashinsky equation.
引用
收藏
页码:2055 / 2069
页数:15
相关论文
共 50 条
  • [1] AN EXAMPLE OF BIFURCATION TO HOMOCLINIC ORBITS
    CHOW, SN
    HALE, JK
    MALLETPARET, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 37 (03) : 351 - 373
  • [3] Degenerate periodic orbits and homoclinic torus bifurcation
    Bridges, TJ
    Donaldson, NM
    PHYSICAL REVIEW LETTERS, 2005, 95 (10)
  • [4] Numerical Bifurcation Analysis of Homoclinic Orbits Embedded in One-Dimensional Manifolds of Maps
    Neirynck, Niels
    Govaerts, Willy
    Kuznetsov, Yuri A.
    Meijer, Hil G. E.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2018, 44 (03):
  • [5] THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS
    CHOW, SN
    DENG, B
    TERMAN, D
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) : 179 - 204
  • [6] Symmetric Homoclinic Orbits at the Periodic Hamiltonian Hopf Bifurcation
    Lerman, Lev
    Markova, Anna
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (08):
  • [7] Bifurcation of Homoclinic Orbits with Saddle-Center Equilibrium
    Xingbo LIU Xianlong FU Deming ZHU Department of Mathematics
    ChineseAnnalsofMathematics, 2007, (01) : 81 - 92
  • [8] Numerical computation of homoclinic orbits for flows
    Chan, WCC
    Wang, DZ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12): : 2841 - 2844
  • [9] Bifurcation of degenerate homoclinic orbits in reversible and conservative systems
    Knobloch J.
    Journal of Dynamics and Differential Equations, 1997, 9 (3) : 427 - 444
  • [10] Computation of bifurcation manifolds of linearly independent homoclinic orbits
    Zhu, Changrong
    Zhang, Weinian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) : 1975 - 1994