Building comprehensible customer churn prediction models with advanced rule induction techniques

被引:180
|
作者
Verbeke, Wouter [1 ]
Martens, David [1 ,2 ]
Mues, Christophe [3 ]
Baesens, Bart [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Decis Sci & Informat Management, B-3000 Louvain, Belgium
[2] Univ Ghent, Hogesch Gent, Dept Business Adm & Publ Management, B-9000 Ghent, Belgium
[3] Univ Southampton, Sch Management, Highfield Southampton SO17 1BJ, Hants, England
关键词
Churn prediction; Data mining; Classification; Comprehensible rule induction; Ant Colony Optimization; ALBA; ANT COLONY OPTIMIZATION; SUPPORT VECTOR MACHINES; CLASSIFICATION; RETENTION; SYSTEM; SEGMENTATION; SATISFACTION; ALGORITHMS; EXTRACTION; DEFECTION;
D O I
10.1016/j.eswa.2010.08.023
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Customer churn prediction models aim to detect customers with a high propensity to attrite. Predictive accuracy, comprehensibility, and justifiability are three key aspects of a churn prediction model. An accurate model permits to correctly target future churners in a retention marketing campaign, while a comprehensible and intuitive rule-set allows to identify the main drivers for customers to churn, and to develop an effective retention strategy in accordance with domain knowledge. This paper provides an extended overview of the literature on the use of data mining in customer churn prediction modeling. It is shown that only limited attention has been paid to the comprehensibility and the intuitiveness of churn prediction models. Therefore, two novel data mining techniques are applied to churn prediction modeling, and benchmarked to traditional rule induction techniques such as C4.5 and RIPPER. Both AntMiner+ and ALBA are shown to induce accurate as well as comprehensible classification rule-sets. AntMiner+ is a high performing data mining technique based on the principles of Ant Colony Optimization that allows to include domain knowledge by imposing monotonicity constraints on the final rule-set. ALBA on the other hand combines the high predictive accuracy of a non-linear support vector machine model with the comprehensibility of the rule-set format. The results of the benchmarking experiments show that ALBA improves learning of classification techniques, resulting in comprehensible models with increased performance. AntMiner+ results in accurate, comprehensible, but most importantly justifiable models, unlike the other modeling techniques included in this study. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2354 / 2364
页数:11
相关论文
共 50 条
  • [1] An analysis on classification models for customer churn prediction
    Mouli, Kathi Chandra
    Raghavendran, Ch. V.
    Bharadwaj, V. Y.
    Vybhavi, G. Y.
    Sravani, C.
    Vafaeva, Khristina Maksudovna
    Deorari, Rajesh
    Hussein, Laith
    COGENT ENGINEERING, 2024, 11 (01):
  • [2] A comparison of machine learning techniques for customer churn prediction
    Vafeiadis, T.
    Diamantaras, K. I.
    Sarigiannidis, G.
    Chatzisavvas, K. Ch.
    SIMULATION MODELLING PRACTICE AND THEORY, 2015, 55 : 1 - 9
  • [3] Advanced Customer Churn Prediction Using Machine Learning
    Yuzer, Gizem
    Tinaz, Zeynep Sena
    Yurtbas, Erva
    Ayata, Deger
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [4] An exploration of Customer Churn prediction models of Telecommunication Orbit
    Swetha, P.
    Usha, S.
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENGINEERING AND TECHNOLOGY (ICONSET 2018), 2018, 2039
  • [5] Intelligent Decision Forest Models for Customer Churn Prediction
    Usman-Hamza, Fatima Enehezei
    Balogun, Abdullateef Oluwagbemiga
    Capretz, Luiz Fernando
    Mojeed, Hammed Adeleye
    Mahamad, Saipunidzam
    Salihu, Shakirat Aderonke
    Akintola, Abimbola Ganiyat
    Basri, Shuib
    Amosa, Ramoni Tirimisiyu
    Salahdeen, Nasiru Kehinde
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [6] Hierarchical Neural Regression Models for Customer Churn Prediction
    Mohammadi, Golshan
    Tavakkoli-Moghaddam, Reza
    Mohammadi, Mehrdad
    JOURNAL OF ENGINEERING, 2013, 2013
  • [7] Machine Learning Models for Customer Churn Risk Prediction
    Akan, Oguzhan
    Verma, Abhishek
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 623 - 628
  • [8] Customer Churn Prediction by Classification Models in Machine Learning
    Zhao, Heng
    Zuo, Xumin
    Xie, Yuanyuan
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 399 - 407
  • [9] An Experimental Study on Four Models of Customer Churn Prediction
    Zhu, Chao
    Qi, Jiayin
    Wang, Chen
    2009 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2009), VOLS 1-9, 2009, : 3199 - +
  • [10] Customer Personality Analysis for Churn Prediction Using Hybrid Ensemble Models and Class Balancing Techniques
    Ahmad, Noman
    Awan, Mazhar Javed
    Nobanee, Haitham
    Zain, Azlan Mohd
    Naseem, Ansar
    Mahmoud, Amena
    IEEE ACCESS, 2024, 12 : 1865 - 1879