Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)

被引:51
|
作者
Heenaye-Mamode Khan, Maleika [1 ]
Boodoo-Jahangeer, Nazmeen [1 ]
Dullull, Wasiimah [1 ]
Nathire, Shaista [1 ]
Gao, Xiaohong [2 ]
Sinha, G. R. [3 ]
Nagwanshi, Kapil Kumar [4 ]
机构
[1] Univ Mauritius, Dept Software & Informat Syst, Reduit, Mauritius
[2] Middlesex Univ, Dept Comp Sci, London, England
[3] Myanmar Inst Informat Technol MIIT Mandalay, Dept Elect & Commun Engn, Mandalay, Myanmar
[4] Amity Univ Rajasthan, Dept Comp Sci & Engn, Jaipur, Rajasthan, India
来源
PLOS ONE | 2021年 / 16卷 / 08期
关键词
COMPUTER-AIDED DETECTION; PERFORMANCE; ACCURACY;
D O I
10.1371/journal.pone.0256500
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The real cause of breast cancer is very challenging to determine and therefore early detection of the disease is necessary for reducing the death rate due to risks of breast cancer. Early detection of cancer boosts increasing the survival chance up to 8%. Primarily, breast images emanating from mammograms, X-Rays or MRI are analyzed by radiologists to detect abnormalities. However, even experienced radiologists face problems in identifying features like micro-calcifications, lumps and masses, leading to high false positive and high false negative. Recent advancement in image processing and deep learning create some hopes in devising more enhanced applications that can be used for the early detection of breast cancer. In this work, we have developed a Deep Convolutional Neural Network (CNN) to segment and classify the various types of breast abnormalities, such as calcifications, masses, asymmetry and carcinomas, unlike existing research work, which mainly classified the cancer into benign and malignant, leading to improved disease management. Firstly, a transfer learning was carried out on our dataset using the pre-trained model ResNet50. Along similar lines, we have developed an enhanced deep learning model, in which learning rate is considered as one of the most important attributes while training the neural network. The learning rate is set adaptively in our proposed model based on changes in error curves during the learning process involved. The proposed deep learning model has achieved a performance of 88% in the classification of these four types of breast cancer abnormalities such as, masses, calcifications, carcinomas and asymmetry mammograms.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-Class Breast Cancer Classification using Deep Learning Convolutional Neural Network
    Nawaz, Majid
    Sewissy, Adel A.
    Soliman, Taysir Hassan A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (06) : 316 - 322
  • [2] Classification of Breast Abnormalities Using a Deep Convolutional Neural Network and Transfer Learning
    A. N. Ruchai
    V. I. Kober
    K. A. Dorofeev
    V. N. Karnaukhov
    M. G. Mozerov
    Journal of Communications Technology and Electronics, 2021, 66 : 778 - 783
  • [3] Classification of Breast Abnormalities Using a Deep Convolutional Neural Network and Transfer Learning
    Ruchai, A. N.
    Kober, V., I
    Dorofeev, K. A.
    Karnaukhov, V. N.
    Mozerov, M. G.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2021, 66 (06) : 778 - 783
  • [4] Classification of breast abnormalities in digital mammography with a deep convolutional neural network
    Ruchay, Alexey
    Dorofeev, Konstantin
    Kober, Vitaly
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XLIII, 2020, 11510
  • [5] Breast Cancer Classification Using Convolutional Neural Network
    Alshanbari, Eman
    Alamri, Hanaa
    Alzahrani, Walaa
    Alghamdi, Manal
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (06): : 101 - 106
  • [6] Multi-class Breast Cancer Classification by A Novel Two-Branch Deep Convolutional Neural Network Architecture
    Alzubaidi, Laith
    Hasan, Reem Ibrahim
    Awad, Fouad H.
    Fadhel, Mohammed A.
    Alshamma, Omran
    Zhang, Jinglan
    12TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2019), 2019, : 268 - 273
  • [7] A multi-class skin Cancer classification using deep convolutional neural networks
    Saket S. Chaturvedi
    Jitendra V. Tembhurne
    Tausif Diwan
    Multimedia Tools and Applications, 2020, 79 : 28477 - 28498
  • [8] A multi-class skin Cancer classification using deep convolutional neural networks
    Chaturvedi, Saket S.
    Tembhurne, Jitendra V.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 28477 - 28498
  • [9] Breast Cancer Classification by Using Multi-Headed Convolutional Neural Network Modeling
    Pathan, Refat Khan
    Alam, Fahim Irfan
    Yasmin, Suraiya
    Hamd, Zuhal Y.
    Aljuaid, Hanan
    Khandaker, Mayeen Uddin
    Lau, Sian Lun
    HEALTHCARE, 2022, 10 (12)
  • [10] The skin cancer classification using deep convolutional neural network
    Dorj, Ulzii-Orshikh
    Lee, Keun-Kwang
    Choi, Jae-Young
    Lee, Malrey
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (08) : 9909 - 9924