Forecasting of Future Flooding and Risk Assessment under CMIP6 Climate Projection in Neuse River, North Carolina

被引:14
|
作者
Pokhrel, Indira [1 ]
Kalra, Ajay [1 ]
Rahaman, Md Mafuzur [2 ]
Thakali, Ranjeet [3 ]
机构
[1] Southern Illinois Univ, Sch Civil Environm & Infrastruct Engn, 1230 Lincoln Dr, Carbondale, IL 62901 USA
[2] AECOM, 2380 McGee St,Suite 200, Kansas City, MO 64108 USA
[3] Bayer Risse Engn Inc, 78 State Highway 173 W,Suite 6, Hampton, NJ 08827 USA
来源
FORECASTING | 2020年 / 2卷 / 03期
关键词
streamflow; CMIP6; bias correction; HEC-RAS; flood inundation maps; risk assessment; FREQUENCY-ANALYSIS; GLOBAL PROJECTIONS; L-MOMENT; HEC-RAS; MODEL; IMPACT; MANAGEMENT; RESOLUTION; EXTREMES; HAZARD;
D O I
10.3390/forecast2030018
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrological extremes associated with climate change are becoming an increasing concern all over the world. Frequent flooding, one of the extremes, needs to be analyzed while considering climate change to mitigate flood risk. This study forecast streamflow and evaluate risk of flooding in the Neuse River, North Carolina considering future climatic scenarios, and comparing them with an existing Federal Emergency Management Agency study. The cumulative distribution function transformation method was adopted for bias correction to reduce the uncertainty present in the Coupled Model Intercomparison Project Phase 6 (CMIP6) streamflow data. To calculate 100-year and 500-year flood discharges, the Generalized Extreme Value (L-Moment) was utilized on bias-corrected multimodel ensemble data with different climate projections. Out of all projections, shared socio-economic pathways (SSP5-8.5) exhibited the maximum design streamflow, which was routed through a hydraulic model, the Hydrological Engineering Center's River Analysis System (HEC-RAS), to generate flood inundation and risk maps. The result indicates an increase in flood inundation extent compared to the existing study, depicting a higher flood hazard and risk in the future. This study highlights the importance of forecasting future flood risk and utilizing the projected climate data to obtain essential information to determine effective strategic plans for future floodplain management.
引用
收藏
页码:323 / 345
页数:23
相关论文
共 50 条
  • [1] Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan
    Ali, Zeshan
    Iqbal, Mudassar
    Khan, Ihsan Ullah
    Masood, Muhammad Umer
    Umer, Muhammad
    Lodhi, Muhammad Usama Khan
    Tariq, Muhammad Atiq Ur Rehman
    JOURNAL OF MOUNTAIN SCIENCE, 2023, 20 (08) : 2263 - 2281
  • [2] Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan
    Zeshan ALI
    Mudassar IQBAL
    Ihsan Ullah KHAN
    Muhammad Umer MASOOD
    Muhammad UMER
    Muhammad Usama Khan LODHI
    Muhammad Atiq Ur Rehman TARIQ
    Journal of Mountain Science, 2023, 20 (08) : 2263 - 2281
  • [3] Hydrological response under CMIP6 climate projection in Astore River Basin, Pakistan
    Zeshan Ali
    Mudassar Iqbal
    Ihsan Ullah Khan
    Muhammad Umer Masood
    Muhammad Umer
    Muhammad Usama Khan Lodhi
    Muhammad Atiq Ur Rehman Tariq
    Journal of Mountain Science, 2023, 20 : 2263 - 2281
  • [4] Future Global River Ice in CMIP6 Models under Climate Change
    Lin, Yu
    Lu, Haishen
    Lindenschmidt, Karl-Erich
    Yu, Zhongbo
    Zhu, Yonghua
    Liu, Mingwen
    Chen, Tingxing
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2024, 63 (10) : 1191 - 1206
  • [5] Analysing Urban Flooding Risk with CMIP5 and CMIP6 Climate Projections
    Oyelakin, Rafiu
    Yang, Wenyu
    Krebs, Peter
    WATER, 2024, 16 (03)
  • [6] Future climate projection across Tanzania under CMIP6 with high-resolution regional climate model
    Magang, Dawido S.
    Ojara, Moses A.
    Yunsheng, Lou
    King'uza, Philemon H.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Future Climate Under CMIP6 Solar Activity Scenarios
    Sedlacek, Jan
    Sukhodolov, Timofei
    Egorova, Tania
    Karagodin-Doyennel, Arseniy
    Rozanov, Eugene
    EARTH AND SPACE SCIENCE, 2023, 10 (07)
  • [8] Selection of CMIP6 GCM with projection of climate over the Amu Darya River Basin
    Obaidullah Salehie
    Mohammed Magdy Hamed
    Tarmizi bin Ismail
    Tze Huey Tam
    Shamsuddin Shahid
    Theoretical and Applied Climatology, 2023, 151 : 1185 - 1203
  • [9] Selection of CMIP6 GCM with projection of climate over the Amu Darya River Basin
    Salehie, Obaidullah
    Hamed, Mohammed Magdy
    bin Ismail, Tarmizi
    Tam, Tze Huey
    Shahid, Shamsuddin
    THEORETICAL AND APPLIED CLIMATOLOGY, 2023, 151 (3-4) : 1185 - 1203
  • [10] Projected Future Flooding Pattern of Wabash River in Indiana and Fountain Creek in Colorado: An Assessment Utilizing Bias-Corrected CMIP6 Climate Data
    Paudel, Swarupa
    Joshi, Neekita
    Kalra, Ajay
    FORECASTING, 2023, 5 (02): : 405 - 423