Deep Learning Segmentation and Classification for Urban Village Using a Worldview Satellite Image Based on U-Net

被引:129
|
作者
Pan, Zhuokun [1 ,2 ,3 ]
Xu, Jiashu [4 ]
Guo, Yubin [4 ]
Hu, Yueming [1 ,5 ,6 ,7 ]
Wang, Guangxing [3 ]
机构
[1] South China Agr Univ, Coll Nat Resources & Environm, Guangzhou 510642, Peoples R China
[2] Guangdong Youyuan Land Informat Technol Co Ltd, Guangzhou 510642, Peoples R China
[3] Southern Illinois Univ, Sch Earth Syst & Sustainabil, Carbondale, IL 62901 USA
[4] South China Agr Univ, Coll Math & Informat, Guangzhou 510642, Peoples R China
[5] Guangdong Prov Key Lab Land Use & Consolidat, Guangzhou 510642, Peoples R China
[6] Guangdong Prov Land Informat Engn Res Ctr, Guangzhou 510642, Peoples R China
[7] Guangzhou South China Res Inst Nat Resource Sci &, Guangzhou 510640, Peoples R China
关键词
deep learning; urban village settlement; Worldview imagery; U-net; segmentation; Guangzhou; REDEVELOPMENT; SLUMS; CHALLENGES;
D O I
10.3390/rs12101574
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Unplanned urban settlements exist worldwide. The geospatial information of these areas is critical for urban management and reconstruction planning but usually unavailable. Automatically characterizing individual buildings in the unplanned urban village using remote sensing imagery is very challenging due to complex landscapes and high-density settlements. The newly emerging deep learning method provides the potential to characterize individual buildings in a complex urban village. This study proposed an urban village mapping paradigm based on U-net deep learning architecture. The study area is located in Guangzhou City, China. The Worldview satellite image with eight pan-sharpened bands at a 0.5-m spatial resolution and building boundary vector file were used as research purposes. There are ten sites of the urban villages included in this scene of the Worldview image. The deep neural network model was trained and tested based on the selected six and four sites of the urban village, respectively. Models for building segmentation and classification were both trained and tested. The results indicated that the U-net model reached overall accuracy over 86% for building segmentation and over 83% for the classification. The F-1-score ranged from 0.9 to 0.98 for the segmentation, and from 0.63 to 0.88 for the classification. The Interaction over Union reached over 90% for the segmentation and 86% for the classification. The superiority of the deep learning method has been demonstrated through comparison with Random Forest and object-based image analysis. This study fully showed the feasibility, efficiency, and potential of the deep learning in delineating individual buildings in the high-density urban village. More importantly, this study implied that through deep learning methods, mapping unplanned urban settlements could further characterize individual buildings with considerable accuracy.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Segmentation and Classification of Glaucoma Using U-Net with Deep Learning Model
    Sudhan, M. B.
    Sinthuja, M.
    Raja, S. Pravinth
    Amutharaj, J.
    Latha, G. Charlyn Pushpa
    Rachel, S. Sheeba
    Anitha, T.
    Rajendran, T.
    Waji, Yosef Asrat
    JOURNAL OF HEALTHCARE ENGINEERING, 2022, 2022
  • [2] Bladder Wall Segmentation using U-Net based Deep Learning
    Ivanitskiy, Michael
    Hadjiiski, Lubomir
    Chan, Heang-Ping
    Samala, Ravi
    Cohan, Richard H.
    Caoili, Elaine M.
    Weizer, Alon
    Alva, Ajjai
    Wei, Jun
    Zhou, Chuan
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [3] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Yadavendra
    Chand, Satish
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (30) : 44291 - 44310
  • [4] Semantic segmentation and detection of satellite objects using U-Net model of deep learning
    Satish Yadavendra
    Multimedia Tools and Applications, 2022, 81 : 44291 - 44310
  • [5] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Faguo Zhou
    Yuansheng Ye
    Yanan Song
    Journal of Signal Processing Systems, 2022, 94 : 1145 - 1157
  • [6] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Zhou, Faguo
    Ye, Yuansheng
    Song, Yanan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (11): : 1145 - 1157
  • [7] Deep Learning Based Cell Segmentation Using Cascaded U-Net Models
    Bakir, Mehmet Emin
    Keles, Hacer Yalim
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [8] Semantic segmentation of urban environments: Leveraging U-Net deep learning model for cityscape image analysis
    Arulananth, T. S.
    Kuppusamy, P. G.
    Ayyasamy, Ramesh Kumar
    Alhashmi, Saadat M.
    Mahalakshmi, M.
    Vasanth, K.
    Chinnasamy, P.
    PLOS ONE, 2024, 19 (04):
  • [9] SPF-Net: Solar panel fault detection using U-Net based deep learning image classification
    Rudro, Rifat Al Mamun
    Nur, Kamruddin
    Al Sohan, Md. Faruk Abdullah
    Mridha, M. F.
    Alfarhood, Sultan
    Safran, Mejdl
    Kanagarathinam, Karthick
    ENERGY REPORTS, 2024, 12 : 1580 - 1594
  • [10] New U-Net for Image Deblurring Using Deep Learning
    Jeong W.
    Kim S.
    Lee C.
    Transactions of the Korean Institute of Electrical Engineers, 2023, 72 (07): : 843 - 848