Analysis of Inverse Lifetime Curves of TaOx Electron-Selective Contacts for Si Solar Cells

被引:0
|
作者
Arulanandam, Madhan K. [1 ]
Kumar, Niranjana Mohan [1 ]
Zhang, Chaomin [1 ]
Iyer, Abhishek [2 ]
Opila, Robert L. [2 ]
King, Richard R. [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Univ Delaware, Newark, DC 19716 USA
关键词
TaOx; electron selective contact; minority charge carrier lifetime; silicon; surface recombination velocity; rapid thermal annealing; SURFACE PASSIVATION; CARRIER; J(0)-ANALYSIS;
D O I
10.1109/pvsc40753.2019.8981188
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The analysis of Auger-corrected inverse minority-carrier lifetime as a function of excess carrier concentration can impart information about many crucial solar cell material properties including: emitter saturation current density (J(o)), surface recombination velocity (SRV), Shockley-Read-Hall (SRH) recombination in the bulk, trap density, band bending, surface Fermi-level pinning, and bandgap narrowing. This work demonstrates TaOx as a potential electron selective contact and passivation layer on silicon. Increasing TaOx thickness reduces the measured upper limit of effective surface recombination velocity (S-eff,S-UL). The minimum S-eff,S-UL is 55 cm/s for CZ n-Si / 30 nm TaOx interfaces. S-eff,S-UL increases for Si / TaOx / ITO structures due to unfavorable band bending.
引用
收藏
页码:983 / 988
页数:6
相关论文
共 50 条
  • [1] Electron-Selective Lithium Contacts for Crystalline Silicon Solar Cells
    Kang, Jingxuan
    Yang, Xinbo
    Liu, Wenzhu
    Liu, Jiang
    Xu, Hang
    Allen, Thomas
    De Wolf, Stefaan
    ADVANCED MATERIALS INTERFACES, 2021, 8 (12)
  • [2] Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells
    Wan, Yimao
    Samundsett, Chris
    Bullock, James
    Allen, Thomas
    Hettick, Mark
    Yan, Di
    Zheng, Peiting
    Zhang, Xinyu
    Cui, Jie
    McKeon, Josephine
    Javey, Ali
    Cuevas, Andres
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (23) : 14671 - 14677
  • [3] State-of-the-Art Electron-Selective Contacts in Perovskite Solar Cells
    Sun, Shijing
    Buonassisi, Tonio
    Correa-Baena, Juan-Pablo
    ADVANCED MATERIALS INTERFACES, 2018, 5 (22):
  • [4] Perovskite-Based Electron-Selective Contacts for Silicon Solar Cells
    Wang, Guangyi
    Yue, Zongyi
    Liu, Wenzhu
    Huang, Zengguang
    Zhong, Sihua
    SOLAR RRL, 2022, 6 (10)
  • [5] Optimization of SnO2-based electron-selective contacts for Si/PEDOT:PSS heterojunction solar cells
    Zheng, Yupeng
    Jiang, Bing
    Gao, Zhongliang
    Lin, Guilu
    Sang, Na
    Chen, Lei
    Li, Meicheng
    SOLAR ENERGY, 2019, 193 : 502 - 506
  • [6] Transmission Electron Microscopy Studies of Electron-Selective Titanium Oxide Contacts in Silicon Solar Cells
    Ali, Haider
    Yang, Xinbo
    Weber, Klaus
    Schoenfeld, Winston V.
    Davis, Kristopher O.
    MICROSCOPY AND MICROANALYSIS, 2017, 23 (05) : 900 - 904
  • [7] Full-Area i-a-Si:H/ATO/Mg Electron-Selective Contacts for Silicon Solar Cells
    Liu, Xiaoning
    Xu, Zhiyuan
    Yan, Yu
    Song, Yaya
    Huang, Qian
    Ren, Huizhi
    Zhang, Xiaodan
    Zhao, Ying
    Hou, Guofu
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9446 - 9454
  • [8] Conductive and Stable Magnesium Oxide Electron-Selective Contacts for Efficient Silicon Solar Cells
    Wan, Yimao
    Samundsett, Chris
    Bullock, James
    Hettick, Mark
    Allen, Thomas
    Yan, Di
    Peng, Jun
    Wu, Yiliang
    Cui, Jie
    Javey, Ali
    Cuevas, Andres
    ADVANCED ENERGY MATERIALS, 2017, 7 (05)
  • [9] Efficient silicon solar cells with highly conductive zirconium nitride electron-selective contacts
    Tian, Juan
    Xu, Kai
    Wang, Guangwei
    Jiang, Hongxu
    Liu, Yuan
    Zhu, Peng
    Wang, Deliang
    APPLIED PHYSICS LETTERS, 2023, 122 (11)
  • [10] Yttrium Fluoride-Based Electron-Selective Contacts for Crystalline Silicon Solar Cells
    Chen, Zhiming
    Lin, Wenjie
    Liu, Zongtao
    Cai, Lun
    Chen, Yifeng
    Ai, Bin
    Liang, Zongcun
    Gao, Pingqi
    Shen, Hui
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (03) : 2158 - 2164