Effective Heat Transfer Properties of Graphene Sheet Nanocomposites and Comparison to Carbon Nanotube Nanocomposites

被引:37
|
作者
Bui, Khoa [1 ,2 ]
Duong, Hai M. [3 ]
Striolo, Alberto [1 ,2 ]
Papavassiliou, Dimitrios V. [1 ,2 ]
机构
[1] Univ Oklahoma, Sch Chem Biol & Mat Engn, Norman, OK 73019 USA
[2] Univ Oklahoma, Carbon Nanotube Technol Ctr CANTEC, Norman, OK 73019 USA
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 117548, Singapore
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 10期
关键词
THERMAL-CONDUCTIVITY; TRANSPORT; COMPOSITES; CHANNEL;
D O I
10.1021/jp109978x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By incorporating nanoinclusions (carbon nanotubes, graphene sheets) with exceptional thermal conductivity into a polymer matrix, one would expect to improve the heat performance of resulting nanocomposites. However, the effective thermal conductivity of carbon-based nanocomposites is strongly influenced by the Kapitza interfacial resistance. In this study, a comparison between carbon nanotubes and graphene sheet nanocomposites that takes into account dispersion patterns of the nanoinclusions and the Kapitza resistance is performed by means of a Monte Carlo simulation. It is found that graphene-based nanocomposites can be more efficient thermal conductors than carbon nanotube ones not only because of smaller KaPitza resistance but also because of the geometry of the graphene sheet When the Kapitza resistance is reduced by appropriate functionalization of the graphene sheets and when the graphene sheet inclusions yield nematic patterns, our calculations suggest the possibility of obtaining composite materials with effective thermal conductivity up to 350 times larger in the direction parallel to the graphene sheets than in the direction perpendicular to them.
引用
收藏
页码:3872 / 3880
页数:9
相关论文
共 50 条
  • [1] Flexural electromechanical properties of multilayer graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites
    Sierra-Chi, C. A.
    Aguilar-Bolados, H.
    Lopez-Manchado, M. A.
    Verdejo, R.
    Cauich-Rodriguez, J., V
    Aviles, F.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2020, 194
  • [2] Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites
    Al-Saleh, Mohammed H.
    SYNTHETIC METALS, 2015, 209 : 41 - 46
  • [3] Polyaniline/Carbon Nanotube Sheet Nanocomposites: Fabrication and Characterization
    Kim, Jae-Woo
    Siochi, Emilie J.
    Carpena-Nunez, Jennifer
    Wise, Kristopher E.
    Connell, John W.
    Lin, Yi
    Wincheski, Russell A.
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (17) : 8597 - 8606
  • [4] Evaluation of effective mechanical properties of nanocomposites reinforced with multiwalled carbon nanotube
    Gahruei, M. H.
    Golestanian, H.
    MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (12) : 1484 - 1491
  • [5] Effect of carbon nanotube persistence length on heat transfer in nanocomposites: A simulation approach
    Bui, Khoa
    Grady, Brian P.
    Saha, Mrinal C.
    Papavassiliou, Dimitrios V.
    APPLIED PHYSICS LETTERS, 2013, 102 (20)
  • [6] Graphene and carbon nanotube reinforced epoxy nanocomposites: A review
    Singh, Navjot Pal
    Gupta, V. K.
    Singh, Amrinder Pal
    POLYMER, 2019, 180
  • [7] Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites
    Yazdani, Bahareh
    Xia, Yongde
    Ahmad, Iftikhar
    Zhu, Yanqiu
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (01) : 179 - 186
  • [8] Electrophoretic fabrication and pseudocapacitive properties of graphene/manganese oxide/carbon nanotube nanocomposites
    Hung, Chung Jung
    Lin, Pang
    Tseng, Tseung Yuen
    JOURNAL OF POWER SOURCES, 2013, 243 : 594 - 602
  • [9] Metallic nanocomposites of carbon nanotube and their bioconjugates: effective antimicrobials?
    Chaudhari, Atul
    Singh, Shree Ram
    Pillai, Shreekumar
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [10] Thermoelectric properties of carbon nanotube/ceramic nanocomposites
    Zhan, GD
    Kuntz, JD
    Mukherjee, AK
    Zhu, PX
    Koumoto, K
    SCRIPTA MATERIALIA, 2006, 54 (01) : 77 - 82