共 48 条
Late Triassic granites from the northwestern margin of the Tibetan Plateau, the Dahongliutan example: petrogenesis and tectonic implications for the evolution of the Kangxiwa Palaeo-Tethys
被引:33
|作者:
Zhang, Qichao
[1
]
Liu, Yan
[2
]
Wu, Zhenhan
[1
]
Huang, He
[2
]
Li, Kan
[3
]
Zhou, Qing
[4
]
机构:
[1] Chinese Acad Geol Sci, Beijing, Peoples R China
[2] Chinese Acad Geol Sci, Inst Geol, Beijing, Peoples R China
[3] Chinese Geol Survey, Xian Inst Geol & Mineral Resources, Xian, Shaanxi, Peoples R China
[4] Chinese Geol Survey, Chengdu Inst Geol & Mineral Resources, Chengdu, Sichuan, Peoples R China
关键词:
S-type granite;
Dahongliutan;
Tibet;
Western Kunlun Orogen;
post-collisional magmatism;
LACHLAN FOLD BELT;
CALC-ALKALINE GRANITOIDS;
WESTERN KUNLUN OROGEN;
POTASSIC MICROGRANULAR ENCLAVES;
NATURAL REFERENCE MATERIAL;
ISOTOPIC MIXING MODEL;
S-TYPE GRANITES;
U-PB AGE;
GEOCHEMICAL CONSTRAINTS;
MAGMATIC EVOLUTION;
D O I:
10.1080/00206814.2017.1419444
中图分类号:
P5 [地质学];
学科分类号:
0709 ;
081803 ;
摘要:
The Dahongliutan granitic pluton consists of two-mica granites and is located in the eastern part of the Western Kunlun Orogen, northwestern Tibetan Plateau. Zircon separates from the pluton yield a SIMS U-Pb age of 217.5 +/- 2.8 Ma. Rocks from the pluton contain relatively high and uniform SiO2 (72.32-73.48 wt%) and total alkalis (Na2O + K2O = 8.07-8.67 wt%) and are peraluminous and high-K calc-alkaline to shoshonitic in composition. The Dahongliutan granites are relatively depleted in the high-field-strength elements and the heavy rare earth elements (HREEs) and have relatively high Rb, and low Ba and Sr concentrations. They contain low total rare earth element (REE) concentrations. The light REEs are strongly enriched relative to the HREEs, with (La/Yb)(N) values of 28.56-37.01. The epsilon(Nd)(t) values range from -10.6 to -8.8, and (Sr-87/Sr-86)(i) = 0.7142-0.7210. Zircons from the pluton yield epsilon(Hf)(t) values of -13.8 to -1.6, and delta O-18 = 10.5-11.6 parts per thousand. Petrographic and geochemical features of the pluton indicate that the granites are S-type and were derived from parting melting of a mixture of metasedimentary and minor metaigneous sources in the middle-lower crust. Magmatic differentiation was dominated by the fractional crystallization of plagioclase, K-feldspar, muscovite, biotite, and accessory monazite, allanite, and Fe-Ti oxides. Regional granitoids were emplaced in the Early-to-Middle Triassic. Other younger granitoids, with ages of 240-200 Ma, are mostly I-type in character and were likely derived from multiple types of source rock, suggesting the source was heterogeneous Triassic crust. Such a scenario is consistent with their formation in a post-collisional setting. Our new data, combined with other geological evidence, suggest that the collision between the Tianshuihai and southern Kunlun terranes occurred between ca. 250 and 240 Ma, resulting in the closure of the Palaeo-Tethys. Post-collisional tectono-magmatic events may have occurred between 240 and 200 Ma.
引用
收藏
页码:175 / 194
页数:20
相关论文