Effects of anthropogenic nitrogen additions and elevated CO2 on microbial community, carbon and nitrogen content in a replicated wetland

被引:3
|
作者
Norgbey, Eyram [1 ,2 ,3 ]
Murava, Raphinos Tackmore [1 ,2 ]
Rajasekar, Adharsh [1 ,2 ]
Huang, Qiong [1 ]
Zhou, Jin [2 ]
Robinson, Steve [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Atmospher Environm & Equip, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, NUIST Reading Acad, Nanjing 210044, Peoples R China
[3] Univ Reading, Soil Res Ctr, Dept Geog & Environm Sci, Reading RG6 6AB, Berks, England
关键词
Rising atmospheric CO2; Nitrogen and carbon cycling; PLFAs; Open-top chamber; ENZYME-ACTIVITIES; SANJIANG PLAIN; SOIL; RESPONSES; PLANT; MINERALIZATION; GROWTH; WATER; EFFICIENCY; GRASSLAND;
D O I
10.1007/s10661-022-10229-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Anthropogenic deposition of nitrogen (N) and elevated CO2 (eaCO2) are expected to increase continuously and rapidly in the near future and influence global carbon cycling. These parameters affect the ecosystem by regulating the microbial community and contribute to soil organic matter decomposition. The study was performed to understand the effects of N additions (4 and 6mgl(-1)) and eaCO2 (700 ppm) on carbon (C)/nitrogen (N) content in the soil, microbial community, and plant biomass (Alternanthera philoxeroides species). The results showed that when the atmospheric CO2 concentration was raised, the total organic carbon (TOC) in the soil statistically increased (P < 0.05) by 4% and 3% under low and high N additions respectively, while the inorganic carbon content also increased by 1% and 3% (P > 0.05) under the same conditions. The increase in the soil TOC content was a result of the movement of carbon from water to the soil due to the presence of vascular tissues of plants in the water. The redundancy analysis (RDA) results revealed that the presence of plant species was responsible for the carbon content increment in the soil. The plant biomass content increased by 30.96% (P = 0.081) and 31.36%, (P = 0.002) under low and high N addition respectively due to the increment in atmospheric CO2. The nitrogen content in the plant species decreased (p > 0.05) by 8.62% and 6.25% at low and high N addition respectively when atmospheric CO2 was raised. This suggests that soil microbes competed with the plants for inorganic nitrogen in the soil and the microbes used up the inorganic nitrogen before it got to the plants. The gram-positive bacteria and fungi population decreased under high N addition and eaCO2 while gram-negative bacteria increased, suggesting that N additions and eaCO2 affected the microbial function and correlated with the nitrogen reduction in the soil. The results from this study serve as a guide to researchers and stakeholders in making policies with regard to the constant increasing CO2 concentration in the atmosphere.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Effects of anthropogenic nitrogen additions and elevated CO2 on microbial community, carbon and nitrogen content in a replicated wetland
    Eyram Norgbey
    Raphinos Tackmore Murava
    Adharsh Rajasekar
    Qiong Huang
    Jin Zhou
    Steve Robinson
    Environmental Monitoring and Assessment, 2022, 194
  • [2] Elevated atmospheric CO2 impact on carbon and nitrogen transformations and microbial community in replicated wetland
    Jiang, Dawei
    Chen, Lifei
    Xia, Nan
    Norgbey, Eyram
    Koomson, Desmond Ato
    Darkwah, Williams Kweku
    ECOLOGICAL PROCESSES, 2020, 9 (01)
  • [3] Elevated atmospheric CO2 impact on carbon and nitrogen transformations and microbial community in replicated wetland
    Dawei Jiang
    Lifei Chen
    Nan Xia
    Eyram Norgbey
    Desmond Ato Koomson
    Williams Kweku Darkwah
    Ecological Processes, 9
  • [4] Elevated CO2 influences microbial carbon and nitrogen cycling
    Xu, Meiying
    He, Zhili
    Deng, Ye
    Wu, Liyou
    van Nostrand, Joy D.
    Hobbie, Sarah E.
    Reich, Peter B.
    Zhou, Jizhong
    BMC MICROBIOLOGY, 2013, 13
  • [5] Elevated CO2 influences microbial carbon and nitrogen cycling
    Meiying Xu
    Zhili He
    Ye Deng
    Liyou Wu
    Joy D van Nostrand
    Sarah E Hobbie
    Peter B Reich
    Jizhong Zhou
    BMC Microbiology, 13
  • [6] Carbon and nitrogen reserve remobilization following defoliation:: Nitrogen and elevated CO2 effects
    Skinner, RH
    Morgan, JA
    Hanson, JD
    CROP SCIENCE, 1999, 39 (06) : 1749 - 1756
  • [7] Effects of Elevated CO2 and Nitrogen Deposition on Ecosystem Carbon Fluxes on the Sanjiang Plain Wetland in Northeast China
    Wang, Jianbo
    Zhu, Tingcheng
    Ni, Hongwei
    Zhong, Haixiu
    Fu, Xiaoling
    Wang, Jifeng
    PLOS ONE, 2013, 8 (06):
  • [8] Effects of biochar and nitrogen fertilizer on microbial communities, CO2 emissions, and organic carbon content in soil
    Yang, Weijun
    Zhang, Liyue
    Wang, Zi
    Zhang, Jinshan
    Li, Pengying
    Su, Lili
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [9] Elevated concentrations of CO2 and nitrogen alter DOC release and soil phenolic content in wetland microcosms
    Byun, Chaeho
    Kim, Seon-Young
    Kang, Hojeong
    ECOSCIENCE, 2020, 27 (02): : 119 - 126
  • [10] Nitrogen and Carbon Cycling in a Grassland Community Ecosystem as Affected by Elevated Atmospheric CO2
    Torbert, H. A.
    Polley, H. W.
    Johnson, H. B.
    INTERNATIONAL JOURNAL OF AGRONOMY, 2012, 2012