A functional central limit theorem for the empirical Ripley's K-function

被引:3
|
作者
Biscio, Christophe A. N. [1 ]
Svane, Anne Marie [1 ]
机构
[1] Aalborg Univ, Dept Math Sci, Skjernvej 4A, DK-9220 Aalborg, Denmark
来源
ELECTRONIC JOURNAL OF STATISTICS | 2022年 / 16卷 / 01期
关键词
Point processes; Gibbs point processes; Ripley's K function; functional central limit theorem; goodness-of-fit test; PERFECT SIMULATION; TESTS;
D O I
10.1214/22-EJS2017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a functional central limit theorem for the empirical Ripley's K-function of Gibbs point processes and point processes with fast decay of correlations. Our theorem greatly extend past results that were restricted to the Poisson case and allow to determine the asymptotic behaviour of statistics based on the K-function which may be used, for example, to develop goodness-of-fit tests. We illustrate this in a simulation study.
引用
收藏
页码:3060 / 3098
页数:39
相关论文
共 50 条
  • [1] A functional central limit theorem for the K-function with an estimated intensity function
    Svane, A. M.
    Biscio, C. A. N.
    Waagepetersen, R.
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 3706 - 3728
  • [2] Algorithm Modification and Estimation Comparison of Ripley’s K-function
    Ge Y.
    Liu W.
    Li Y.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2023, 48 (06): : 970 - 978
  • [3] Generalizations of Ripley's K-function with Application to Space Curves
    Sporring, Jon
    Waagepetersen, Rasmus
    Sommer, Stefan
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 731 - 742
  • [4] On explicit formulas of edge effect correction for Ripley's K-function
    Goreaud, F
    Pélissier, R
    JOURNAL OF VEGETATION SCIENCE, 1999, 10 (03) : 433 - 438
  • [5] Ripley's K-function for Network-Constrained Flow Data
    Kan, Zihan
    Kwan, Mei-Po
    Tang, Luliang
    GEOGRAPHICAL ANALYSIS, 2022, 54 (04) : 769 - 788
  • [6] On the Use of Ripley's K-Function and Its Derivatives to Analyze Domain Size
    Kiskowski, Maria A.
    Hancock, John F.
    Kenworthy, Anne K.
    BIOPHYSICAL JOURNAL, 2009, 97 (04) : 1095 - 1103
  • [7] Weighting Ripley's K-Function to Account for the Firm Dimension in the Analysis of Spatial Concentration
    Giuliani, Diego
    Arbia, Giuseppe
    Espa, Giuseppe
    INTERNATIONAL REGIONAL SCIENCE REVIEW, 2014, 37 (03) : 251 - 272
  • [8] Alternative measure of border effects across regions: Ripley's K-function method
    Ge, Ying
    Pu, Yingxia
    Sun, Mengdi
    PAPERS IN REGIONAL SCIENCE, 2021, 100 (01) : 287 - 302
  • [9] Using Ripley's K-function to Improve Graph-Based Clustering Techniques
    Streib, Kevin
    Davis, James W.
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [10] Extending Ripley's K-Function to Quantify Aggregation in 2-D Grayscale Images
    Amgad, Mohamed
    Itoh, Anri
    Tsui, Marco Man Kin
    PLOS ONE, 2015, 10 (12):