A new refinement of young's inequality

被引:8
|
作者
Alzer, Horst [1 ]
Koumandos, Stamatis [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
trigonometric polynomials; sharp inequalities; Young's inequality; Fourier series;
D O I
10.1017/S0013091504000744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A classical theorem due to Young states that the cosine polynomial [Graphics] is positive for all n >= 1 and x epsilon (0, pi). We prove the following refinement. For all n >= 2 and x epsilon [0, pi] we have 1/6 + c(pi - X)(2) <= C-n (x), with the best possible constant factor [Graphics]
引用
收藏
页码:255 / 262
页数:8
相关论文
共 50 条
  • [1] A NEW REFINEMENT OF YOUNG'S INEQUALITY
    Hoorfar, Abdolhossein
    Qi, Feng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (04): : 689 - 692
  • [2] A refinement of Young's inequality
    Korus, P.
    ACTA MATHEMATICA HUNGARICA, 2017, 153 (02) : 430 - 435
  • [3] A refinement of Young’s inequality
    P. Kórus
    Acta Mathematica Hungarica, 2017, 153 : 430 - 435
  • [4] A complete refinement of Young's inequality
    Sababheh, M.
    Choi, D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (01) : 379 - 393
  • [5] A GENERALIZED REFINEMENT OF YOUNG'S INEQUALITY
    Ren, Yonghui
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1463 - 1470
  • [6] New refinement of Niezgoda's inequality with applications to Ky Fan inequality
    Chanan, Sadia
    Khan, Asif R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (04): : 814 - 829
  • [7] A Generalized Refinement of Young Inequality And Applications
    Akkouchi, Mohamed
    Amine Ighachane, Mohamed
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 129 - 138
  • [8] New refinements of Young’s inequality
    Ling Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 909 - 915
  • [9] New refinements of Young's inequality
    Zhu, Ling
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 909 - 915
  • [10] A general refinement of Jordan's inequality and a refinement of L. Yang's inequality
    Niu, Da-Wei
    Huo, Zhen-Hong
    Cao, Jian
    Qi, Feng
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (3-4) : 157 - 164