Application of quantum algorithms to the study of permutations and group automorphisms

被引:3
|
作者
Bonanome, Marianna
Hillery, Mark
Buzek, Vladimir
机构
[1] CUNY, Grad Ctr, Dept Math, New York, NY 10016 USA
[2] CUNY Hunter Coll, Dept Phys, New York, NY 10021 USA
[3] Slovak Acad Sci, Res Ctr Quantum Informat, Bratislava 84511, Slovakia
来源
PHYSICAL REVIEW A | 2007年 / 76卷 / 01期
关键词
D O I
10.1103/PhysRevA.76.012324
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss three applications of efficient quantum algorithms to determining properties of permutations and group automorphisms. The first uses the Bernstein-Vazirani algorithm to determine an unknown homomorphism from Z(p-1)(m) to Aut(Z(p)) where p is prime. The remaining two make use of modifications of the Grover search algorithm. The first finds the fixed point of a permutation or an automorphism (assuming it has only one besides the identity). It can be generalized to find cycles of a specified size for permutations or orbits of a specified size for automorphisms. The second finds which of a set of permutations or automorphisms maps one particular element of a set or group onto another. This has relevance to the conjugacy problem for groups. We show how two of these algorithms can be implemented via programmable quantum processors. This approach opens new perspectives in quantum information processing when both the data and the programs are represented by states of quantum registers. In particular, quantum programs that specify control over data can be treated using methods of quantum information theory.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum group of automorphisms of a finite quantum group
    Bhowmick, Jyotishman
    Skalski, Adam
    Soltan, Piotr M.
    JOURNAL OF ALGEBRA, 2015, 423 : 514 - 537
  • [2] QUANTUM GROUP-REPRESENTATIONS AND PERMUTATIONS
    VASSEROT, E
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1993, 26 (06): : 747 - 773
  • [3] Quantum Query Algorithms for Automorphisms of Galois Groups
    Skuskovniks, Agnis
    Freivalds, Rusins
    PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTER, COMMUNICATION, CONTROL AND AUTOMATION, 2013, 68 : 38 - +
  • [4] On simple modules and automorphisms of the quantum Galilei group
    Lu, Tao
    Xu, Mingfan
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (08) : 3490 - 3511
  • [5] APPLICATION OF GROUP THEORY TO QUANTUM CHEMISTRY .3. METHOD OF CYCLIC PERMUTATIONS OF EQUIVALENT ORBITALS
    DAVTYAN, OK
    MAKORDEI, FV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1967, 41 (09): : 1248 - &
  • [6] APPLICATION OF GROUP THEORY TO QUANTUM CHEMISTRY .4. METHOD OF DIHEDRAL PERMUTATIONS OF EQUIVALENT ORBITALS
    DAVTYAN, OK
    MAKORDEI, FV
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1967, 41 (11): : 1467 - &
  • [7] CUNTZ ALGEBRA AUTOMORPHISMS: GRAPHS AND STABILITY OF PERMUTATIONS
    Brenti, Francesco
    Conti, Roberto
    Nenashev, Gleb
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (12) : 8433 - 8476
  • [8] Permutations, tensor products, and Cuntz algebra automorphisms
    Brenti, Francesco
    Conti, Roberto
    ADVANCES IN MATHEMATICS, 2021, 381
  • [9] Automorphisms of the group of automorphisms of a universal Coxeter group
    Guerch, Yassine
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (01): : 251 - 276
  • [10] Quantum algorithms in group theory
    Batty, M
    Braunstein, SL
    Duncan, AJ
    Rees, S
    COMPUTATIONAL AND EXPERIMENTAL GROUP THEORY, 2004, 349 : 1 - 62