Parameter estimation of the macroscopic fundamental diagram: A maximum likelihood approach

被引:14
|
作者
Aghamohammadi, Rafegh [1 ]
Laval, Jorge A. [2 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI USA
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
Macroscopic fundamental diagram; Analytical approximation; Maximum likelihood estimation; ANALYTICAL APPROXIMATION; VARIATIONAL FORMULATION; KINEMATIC WAVES;
D O I
10.1016/j.trc.2022.103678
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
This paper extends the Stochastic Method of Cuts (SMoC) to approximate the Macroscopic Fundamental Diagram (MFD) of urban networks and uses Maximum Likelihood Estimation (MLE) method to estimate the model parameters based on empirical data from a corridor and 30 cities around the world. For the corridor case, the estimated values are in good agreement with the measured values of the parameters. For the network datasets, the results indicate that the method yields satisfactory parameter estimates and graphical fits for roughly 50% of the studied networks, where estimations fall within the expected range of the parameter values. The satisfactory estimates are mostly for the datasets which (i) cover a relatively wider range of densities and (ii) the average flow values at different densities are approximately normally distributed similar to the probability density function of the SMoC. The estimated parameter values are compared to the real or expected values and any discrepancies and their potential causes are discussed in depth to identify the challenges in the MFD estimation both analytically and empirically. In particular, we find that the most important issues needing further investigation are: (i) the distribution of loop detectors within the links, (ii) the distribution of loop detectors across the network, and (iii) the treatment of unsignalized intersections and their impact on the block length.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Parameter estimation with reluctant quantum walks: a maximum likelihood approach
    Ellinas, Demosthenes
    Jarvis, Peter D.
    Pearce, Matthew
    PHYSICA SCRIPTA, 2024, 99 (02)
  • [3] Data fusion algorithm for macroscopic fundamental diagram estimation
    Ambuhl, Lukas
    Menendez, Monica
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2016, 71 : 184 - 197
  • [4] Ultrasonic Parameter Estimation Using the Maximum Likelihood Estimation
    Laddada, S.
    Lemlikchi, S.
    Djelouah, H.
    Si-Chaib, M. O.
    2015 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2015, : 200 - +
  • [5] ELM parameter estimation in view of maximum likelihood
    Yang, Lanzhen
    Tsang, Eric C. C.
    Wang, Xizhao
    Zhang, Chengling
    NEUROCOMPUTING, 2023, 557
  • [6] Maximum likelihood estimation for the Erlang integer parameter
    Miller, GK
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (04) : 335 - 341
  • [7] On maximum likelihood estimation of the binomial parameter n
    Gupta, AK
    Nguyen, TT
    Wang, YN
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03): : 599 - 606
  • [8] Cross-comparison of Macroscopic Fundamental Diagram Estimation Methods
    Courbon, Thomas
    Leclercq, Ludovic
    STATE OF THE ART IN THE EUROPEAN QUANTITATIVE ORIENTED TRANSPORTATION AND LOGISTICS RESEARCH, 2011: 14TH EURO WORKING GROUP ON TRANSPORTATION & 26TH MINI EURO CONFERENCE & 1ST EUROPEAN SCIENTIFIC CONFERENCE ON AIR TRANSPORT, 2011, 20
  • [9] A penalized simulated maximum likelihood approach in parameter estimation for stochastic differential equations
    Sun, Libo
    Lee, Chihoon
    Hoeting, Jennifer A.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 54 - 67
  • [10] Maximum-likelihood parameter estimation of bilinear systems
    Gibson, S
    Wills, A
    Ninness, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (10) : 1581 - 1596