Using neural networks to estimate redshift distributions. An application to CFHTLenS

被引:58
|
作者
Bonnett, Christopher [1 ,2 ]
机构
[1] CSIC IEEC, Inst Ciencies Espai, Fac Ciencies, E-08193 Barcelona, Spain
[2] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain
关键词
gravitational lensing: weak; galaxies: distances and redshifts; galaxies: statistics; distance scale; large scale structure of Universe; TELESCOPE LENSING SURVEY; VLT DEEP SURVEY; PHOTOMETRIC REDSHIFTS; RANDOM FORESTS; GALAXIES; CLASSIFICATION; INFORMATION; PREDICTION; EVOLUTION; TREES;
D O I
10.1093/mnras/stv230
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a novel way of using neural networks (NN) to estimate the redshift distribution of a galaxy sample. We are able to obtain a probability density function (PDF) for each galaxy using a classification NN. The method is applied to 58 714 galaxies in CFHTLenS that have spectroscopic redshifts from DEEP2, VVDS and VIPERS. Using this data, we show that the stacked PDFs give an excellent representation of the true N(z) using information from 5, 4 or 3 photometric bands. We show that the fractional error due to using N((zphot)) instead of N((ztruth)) is <= 1 per cent on the lensing power spectrum (P-k) in several tomographic bins. Further, we investigate how well this method performs when few training samples are available and show that in this regime the NN slightly overestimates the N(z) at high z. Finally, the case where the training sample is not representative of the full data set is investigated.
引用
收藏
页码:1043 / 1056
页数:14
相关论文
共 50 条
  • [1] CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions
    Benjamin, Jonathan
    Van Waerbeke, Ludovic
    Heymans, Catherine
    Kilbinger, Martin
    Erben, Thomas
    Hildebrandt, Hendrik
    Hoekstra, Henk
    Kitching, Thomas D.
    Mellier, Yannick
    Miller, Lance
    Rowe, Barnaby
    Schrabback, Tim
    Simpson, Fergus
    Coupon, Jean
    Fu, Liping
    Harnois-Deraps, Joachim
    Hudson, Michael J.
    Kuijken, Konrad
    Semboloni, Elisabetta
    Vafaei, Sanaz
    Velander, Malin
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 431 (02) : 1547 - 1564
  • [2] CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys
    Choi, A.
    Heymans, C.
    Blake, C.
    Hildebrandt, H.
    Duncan, C. A. J.
    Erben, T.
    Nakajima, R.
    Van Waerbeke, L.
    Viola, M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 463 (04) : 3737 - 3754
  • [3] The application of the correlation coefficient of Mendelian distributions.
    Snow, EC
    BIOMETRIKA, 1911, 8 : 420 - 424
  • [4] Mortality modeling using probability distributions. APPLICATION in greek mortality data
    Andreopoulos, Panagiotis
    Bersimis, G. Fragkiskos
    Tragaki, Alexandra
    Rovolis, Antonis
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (01) : 127 - 140
  • [5] Ordinary Multiplication of Distributions. Application to Control of Economic Processes
    Kim, A. V.
    Kormyshev, V. M.
    Serova, N. B.
    Fitina, L. N.
    Kozhakhmetov, A. B.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2017 (ICCMSE-2017), 2017, 1906
  • [6] Using neural networks to estimate regions of stability
    Ferreira, ED
    Krogh, BH
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 1989 - 1993
  • [7] STORM EROSIVITY USING IDEALIZED INTENSITY DISTRIBUTIONS.
    Brown, L.C.
    Foster, G.R.
    Transactions of the American Society of Agricultural Engineers, 1987, 30 (02): : 379 - 386
  • [8] Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics
    Amin Manouchehrian
    Mostafa Sharifzadeh
    Rasoul Hamidzadeh Moghadam
    InternationalJournalofMiningScienceandTechnology, 2012, 22 (02) : 229 - 236
  • [9] Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics
    Manouchehrian, Amin
    Sharifzadeh, Mostafa
    Moghadam, Rasoul Hamidzadeh
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2012, 22 (02) : 229 - 236
  • [10] Polymer Networks from Preformed Precursors Having Molecular Weight and Group Reactivity Distributions. Theory and Application
    Dusek, Karel
    Duskova-Smrckova, Miroslava
    Huybrechts, Jos
    Durackova, Andrea
    MACROMOLECULES, 2013, 46 (07) : 2767 - 2784