Diffusion MRI and Silver Standard Masks to Improve CNN-based Thalamus Segmentation

被引:4
|
作者
Pinheiro, G. R. [1 ]
Brusini, L. [2 ]
Bajrami, A. [3 ]
Pizzini, F. B. [4 ]
Calabrese, M. [3 ]
Reis, F. [5 ]
Appenzeller, S. [5 ]
Menegaz, G. [2 ]
Rittner, L. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, SP, Brazil
[2] Univ Verona, Dept Comp Sci, Verona, Italy
[3] Univ Verona, Dept Neurosci Biomed & Movement Sci, Neurol, Verona, Italy
[4] Univ Verona, Dept Diagnost & Publ Hlth, Radiol, Verona, Italy
[5] Univ Estadual Campinas, Sch Med Sci, Rheumatol, Campinas, SP, Brazil
来源
基金
巴西圣保罗研究基金会;
关键词
Thalamus segmentation; Diffusion MRI; Silver-standard; Deep Learning; VALIDATION;
D O I
10.1117/12.2581895
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The thalamus is an internal structure of the brain whose changes are related to diseases such as multiple sclerosis and Parkinson's disease. Thus, the thalamus segmentation is an important step in studies and applications related to these disorders, for example, for shape measuring and surgical planning. The most used software and tools for brain structures segmentation employ atlas-based algorithms that usually require long processing times and sometimes lead to inaccurate results on sub-cortical structures. New methods, that minimize those problems, using deep learning for segmenting brain structures have been recently proposed. However, for some structures such as the thalamus, these methods still tend to have unsatisfactory results since they rely only on T1w images, where the contrast can be low or absent. Aiming to overcome these issues, we proposed a Convolutional Neural Network (CNN) trained with multi-modal data (structural and diffusion MRI) and the use of silver standard masks created from multiple automatic segmentations. Results on a subset of 190 subjects from the Human Connectome Project (HCP) showed an improvement in segmentation quality, confirming the effectiveness of diffusion data in differentiating tissues due to measured micro-structural properties.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A CNN-BASED FRAMEWORK FOR BLADDER WALL SEGMENTATION USING MRI
    Hammouda, K.
    Khalifa, F.
    Soliman, A.
    Ghazal, M.
    Abou El-Ghar, M.
    Haddad, A.
    Elmogy, M.
    Darwish, H. E.
    Khalil, A.
    Elmaghraby, A.
    Keynton, R.
    El-Baz, A.
    2019 FIFTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2019, : 68 - 71
  • [2] Domain Adaptation using Silver Standard Masks for Lateral Ventricle Segmentation in FLAIR MRI
    Crystal, Owen
    Maralani, Pejman J.
    Black, Sandra E.
    Moody, Alan R.
    Khademi, April
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1895 - 1909
  • [3] A Context-Dependent CNN-Based Framework for Multiple Sclerosis Segmentation in MRI
    Placidi, Giuseppe
    Cinque, Luigi
    Foresti, Gian Luca
    Galassi, Francesca
    Mignosi, Filippo
    Nappi, Michele
    Polsinelli, Matteo
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2025, 35 (03)
  • [4] On the use of GNN-based structural information to improve CNN-based semantic image segmentation
    Coupeau, Patty
    Fasquel, Jean-Baptiste
    Dinomais, Mickael
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 101
  • [5] Comprehensive benchmarking of CNN-based tumor segmentation methods using multimodal MRI data
    Kundal K.
    Rao K.V.
    Majumdar A.
    Kumar N.
    Kumar R.
    Computers in Biology and Medicine, 2024, 178
  • [6] A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy
    Fu, Yabo
    Mazur, Thomas R.
    Wu, Xue
    Liu, Shi
    Chang, Xiao
    Lu, Yonggang
    Li, H. Harold
    Kim, Hyun
    Roach, Michael C.
    Henke, Lauren
    Yang, Deshan
    MEDICAL PHYSICS, 2018, 45 (11) : 5129 - 5137
  • [7] Carcass image segmentation using CNN-based methods
    Gonçalves D.N.
    Weber V.A.D.M.
    Pistori J.G.B.
    Gomes R.D.C.
    de Araujo A.V.
    Pereira M.F.
    Gonçalves W.N.
    Pistori H.
    Pistori, Hemerson (pistori@ucdb.br), 1600, China Agricultural University (08) : 560 - 572
  • [8] AUTOMATED OBJECT LABELING FOR CNN-BASED IMAGE SEGMENTATION
    Novozamsky, A.
    Vit, D.
    Sroubek, F.
    Franc, J.
    Krbalek, M.
    Bilkova, Z.
    Zitova, B.
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2036 - 2040
  • [9] Evaluating CNN-Based Semantic Food Segmentation Across Illuminants
    Ciocca, Gianluigi
    Mazzini, Davide
    Schettini, Raimondo
    COMPUTATIONAL COLOR IMAGING, CCIW 2019, 2019, 11418 : 247 - 259
  • [10] Analysis and Optimization of CNN-based Semantic Segmentation of Satellite Images
    Im, Heeji
    Yang, Hoeseok
    2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, : 218 - 220