URetinex-Net: Retinex-based Deep Unfolding Network for Low-light Image Enhancement

被引:301
|
作者
Wu, Wenhui [1 ]
Weng, Jian [2 ]
Zhang, Pingping [3 ]
Wang, Xu [2 ]
Yang, Wenhan [4 ]
Jiang, Jianmin [2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[4] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Retinex model-based methods have shown to be effective in layer-wise manipulation with well-designed priors for low-light image enhancement. However, the commonly used handcrafted priors and optimization-driven solutions lead to the absence of adaptivity and efficiency. To address these issues, in this paper, we propose a Retinex-based deep unfolding network (URetinex-Net), which unfolds an optimization problem into a learnable network to decompose a low-light image into reflectance and illumination layers. By formulating the decomposition problem as an implicit priors regularized model, three learning-based modules are carefully designed, responsible for data-dependent initialization, high-efficient unfolding optimization, and user-specified illumination enhancement, respectively. Particularly, the proposed unfolding optimization module, introducing two networks to adaptively fit implicit priors in data-driven manner, can realize noise suppression and details preservation for the final decomposition results. Extensive experiments on real-world low-light images qualitatively and quantitatively demonstrate the effectiveness and superiority of the proposed method over state-of-the-art methods. The code is available at https://github.com/AndersonYong/URetinex-Net.
引用
收藏
页码:5891 / 5900
页数:10
相关论文
共 50 条
  • [1] Retinex-based Low-Light Image Enhancement
    Luo, Rui
    Feng, Yan
    He, Mingxin
    Zhang, Yuliang
    2023 ASIA PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE, APSIPA ASC, 2023, : 1429 - 1434
  • [2] A Retinex-based network for image enhancement in low-light environments
    Wu, Ji
    Ding, Bing
    Zhang, Beining
    Ding, Jie
    PLOS ONE, 2024, 19 (05):
  • [3] Dual Autoencoder Network for Retinex-Based Low-Light Image Enhancement
    Park, Seonhee
    Yu, Soohwan
    Kim, Minseo
    Park, Kwanwoo
    Paik, Joonki
    IEEE ACCESS, 2018, 6 : 22084 - 22093
  • [4] Low-Light Image Enhancement using Retinex-based Network with Attention Mechanism
    Ma S.
    Pan W.
    Li N.
    Du S.
    Liu H.
    Xu B.
    Xu C.
    Li X.
    International Journal of Advanced Computer Science and Applications, 2024, 15 (01) : 489 - 497
  • [5] Retinex-Based Multiphase Algorithm for Low-Light Image Enhancement
    Al-Hashim, Mohammad Abid
    Al-Ameen, Zohair
    TRAITEMENT DU SIGNAL, 2020, 37 (05) : 733 - 743
  • [6] Retinex-Based Fast Algorithm for Low-Light Image Enhancement
    Liu, Shouxin
    Long, Wei
    He, Lei
    Li, Yanyan
    Ding, Wei
    ENTROPY, 2021, 23 (06)
  • [7] Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment
    Liu, Xinyi
    Xie, Qi
    Zhao, Qian
    Wang, Hong
    Meng, Deyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15758 - 15771
  • [8] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588
  • [9] Low-Light Image Enhancement by Retinex-Based Algorithm Unrolling and Adjustment
    Liu, Xinyi
    Xie, Qi
    Zhao, Qian
    Wang, Hong
    Meng, Deyu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15758 - 15771
  • [10] A Deep Retinex-Based Low-Light Enhancement Network Fusing Rich Intrinsic Prior Information
    Li, Yujie
    Wei, Xuekai
    Liao, Xiaofeng
    Zhao, You
    Jia, Fan
    Zhuang, Xu
    Zhou, Mingliang
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (11)