Levitation and Thrust Control of a Maglev LCD Glass Conveyor

被引:0
|
作者
Kim, Chang-Hyun [1 ]
Lee, Jong-Min [1 ]
Han, Hyung-Suk [1 ]
Kim, Bong-Seup [1 ]
机构
[1] Korea Inst Machinery & Mat, Dept Magnet Levitat & Linear Dr, Taejon 305343, South Korea
关键词
SYSTEM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the levitation and thrust control of a magnetically levitated (Maglev) LCD glass conveyor is introduced. In order to levitate the conveyor system, electromagnets (EM) and permanent magnets (PM) are used together. Due to the use of the PM, power consumption for levitation can be significantly reduced. To thrust the vehicle, a linear induction motor (LIM) is designed and installed. Power required for the levitation and thrust is supplied from a contactless power supply (CPS), hence completely contactless operation is possible. The levitation electromagnets are controlled to maintain a constant air gap. Dual gap sensors are used for one electromagnet and the combination of the sensors decreases air gap fluctuation when the vehicle is passing by the rail joints. Precise thrust control with velocity profile generation is proposed for loading and unloading of payloads at desired positions. Simulations and experimental results are given to verify the levitation and thrust control.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Suboptimal Control of Magnetic Levitation (Maglev) System
    Pati, Avadh
    Negi, Richa
    2014 3RD INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (ICRITO) (TRENDS AND FUTURE DIRECTIONS), 2014,
  • [2] Effective method to control the levitation force and levitation height in a superconducting maglev system
    Yang Peng-Tao
    Yang Wan-Min
    Wang Miao
    Li Jia-Wei
    Guo Yu-Xia
    CHINESE PHYSICS B, 2015, 24 (11)
  • [3] Effective method to control the levitation force and levitation height in a superconducting maglev system
    杨芃焘
    杨万民
    王妙
    李佳伟
    郭玉霞
    Chinese Physics B, 2015, 24 (11) : 487 - 491
  • [4] Acceleration sensorless levitation control for the hybrid maglev system
    Institute of Electrical Engineering, Chinese Acad. of Sci., Beijing 100080, China
    Harbin Gongye Daxue Xuebao, 2008, 5 (823-826):
  • [5] On Levitation and Lateral Control of Electromagnetic Suspension Maglev Systems
    Aly, Mohamed
    Alberts, Thomas
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (06):
  • [6] Nonlinear Control Scheme for the Levitation Module of Maglev Train
    He, Guang
    Li, Jie
    Cui, Peng
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2016, 138 (07):
  • [7] Control of levitation parameters and dynamic performance of maglev vehicle
    Tang G.
    Wang B.
    Xia C.
    Li Y.
    Journal of Railway Science and Engineering, 2023, 20 (03) : 790 - 801
  • [8] The dynamic simulation analysis of the coupling vibration of a maglev levitation frame and the levitation control system
    Song, Rongrong
    Ma, Weihua
    JOURNAL OF VIBROENGINEERING, 2015, 17 (01) : 421 - 430
  • [9] PID control of maglev levitation system based on disturbance observer
    Guo, Zhaoyu
    Li, Jie
    COMPUTER AND INFORMATION TECHNOLOGY, 2014, 519-520 : 1353 - 1359
  • [10] Levitation Control Design of Super-Speed Maglev Trains
    Kim, Chang-Hyun
    Lim, Jaewon
    Lee, Jong-Min
    Han, Hyung-Suk
    Park, Doh Young
    2014 WORLD AUTOMATION CONGRESS (WAC): EMERGING TECHNOLOGIES FOR A NEW PARADIGM IN SYSTEM OF SYSTEMS ENGINEERING, 2014,