On two-path convexity in multipartite tournaments

被引:17
|
作者
Parker, Darren B. [1 ]
Westhoff, Randy F. [2 ]
Wolf, Marty J. [2 ]
机构
[1] Univ Dayton, Dept Math, Dayton, OH 45469 USA
[2] Bemidji State Univ, Dept Math & Comp Sci, Bemidji, MN 56601 USA
关键词
D O I
10.1016/j.ejc.2007.03.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of two-path convexity, we study the rank, Helly number Radon number Caratheodory number, and hull number for multipartite tournaments. We show the maximum Caratheoclory number of a multipartite tournament is 3. We then derive tight upper bounds for rank in both general multipartite tournaments and clone-free Multipartite tournaments. We show that these same tight upper bounds hold for the Helly number, Radon number, and hull number. We classify all clone-free multipartite tournaments of maximum Helly number, Radon number, hull number, and rank. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:641 / 651
页数:11
相关论文
共 50 条
  • [1] Two-path convexity in clone-free regular multipartite tournaments
    Parker, Darren B.
    Westhoff, Randy F.
    Wolf, Marty J.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 36 : 177 - 196
  • [2] Two-Path Convexity and Bipartite Tournaments of Small Rank
    Parker, Darren B.
    Westhofft, Randy F.
    Wolf, Marty J.
    ARS COMBINATORIA, 2010, 97A : 181 - 191
  • [3] Two-path mechanism
    Borman, Stu
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (33) : 9 - 9
  • [4] ON MULTIPARTITE TOURNAMENTS
    GODDARD, WD
    KUBICKI, G
    OELLERMANN, OR
    TIAN, S
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 52 (02) : 284 - 300
  • [5] On the path covering number of given subdigraphs of regular multipartite tournaments
    Volkmann, Lutz
    Winzen, Stefan
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 72 : 211 - 230
  • [6] A Proof of the Two-path Conjecture
    Fleischner, Herbert
    Molina, Robert R.
    Smith, Ken W.
    West, Douglas B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [7] Unambiguous path discrimination in a two-path interferometer
    Len, Yink Loong
    Dai, Jibo
    Englert, Berthold-Georg
    Krivitsky, Leonid A.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [8] Kings in multipartite tournaments
    Koh, KM
    Tan, BP
    DISCRETE MATHEMATICS, 1995, 147 (1-3) : 171 - 183
  • [9] Strongly 4-path-connectivity in almost regular multipartite tournaments
    Stella, Irene
    Volkmann, Lutz
    Winzen, Stefan
    DISCRETE MATHEMATICS, 2007, 307 (24) : 3213 - 3219
  • [10] CYCLES IN MULTIPARTITE TOURNAMENTS
    GUO, YB
    VOLKMANN, L
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 62 (02) : 363 - 366