Low temperature synthesis of magnetite and maghemite nanoparticles

被引:8
|
作者
Bhagwat, Shrikant [2 ]
Singh, Hema [2 ]
Athawale, Anjali [2 ]
Hannoyer, Beatrice [3 ]
Jouen, Samuel [3 ]
Lefez, Benoit [3 ]
Kundaliya, Darshan [4 ]
Pasricha, Renu [1 ]
Kulkarni, Shailaja [1 ]
Ogale, Satishchandra [1 ]
机构
[1] Natl Chem Lab, Phys & Mat Chem Lab, Pune 411008, Maharashtra, India
[2] Univ Poona, Dept Chem, Pune 411007, Maharashtra, India
[3] Univ Rouen, Inst Mat Rouen, LASTSM, F-76801 St Etienne, France
[4] Univ Maryland, Ctr Superconduct Res, College Pk, MD 20742 USA
关键词
magnetite; maghemite; nanoparticles; low temperature synthesis;
D O I
10.1166/jnn.2007.873
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report on the synthesis of iron oxide nanoparticles below 100 degrees C by a simple chemical protocol. The uniqueness of the method lies in the use of Ferrous ammoniurn sulphate (in conjugation with FeCl3) which helps maintain the stability of Fe-2+ state in the reaction sequence thereby controlling the phase formation. Hexamine was added as the stabilizer. The nanoparticles synthesized at three different temperatures viz, 5 degrees, 27 degrees, and 95 degrees C are characterized by several techniques. Generally, when a mixture of Fe3+ and Fe2+ is added to sodium hydroxide, alpha-Fe2O3 (the anti-ferromagnetic phase) is formed after the dehydration process of the hydroxide. In our case however, the phases formed at all the three temperatures were found to be ferro (ferri) magnetic, implying modification of the formation chemistry due to the specifics of our method. The nanoparticles synthesized at the lowest temperature exhibit magnetite phase, while increase in growth temperature to 95 degrees C leads to the maghemite phase.
引用
收藏
页码:4294 / 4302
页数:9
相关论文
共 50 条
  • [1] Low-temperature Synthesis of Maghemite Nanoparticles
    Kartsonakis, I
    Papadopoulos, N.
    Tserotas, Ph
    Svec, P.
    MATERIALS AND APPLICATIONS FOR SENSORS AND TRANSDUCERS II, 2013, 543 : 468 - +
  • [2] Controlled Synthesis of Magnetic Iron Oxide Nanoparticles: Magnetite or Maghemite?
    Schwaminger, Sebastian P.
    Syhr, Christopher
    Berensmeier, Sonja
    CRYSTALS, 2020, 10 (03):
  • [3] Low temperature synthesis of monolithic mesoporous magnetite nanoparticles
    El-kharrag, Rkia
    Amin, A. M. R.
    Greish, Yaser E.
    CERAMICS INTERNATIONAL, 2012, 38 (01) : 627 - 634
  • [4] Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis
    Strobel, Reto
    Pratsinis, Sotiris E.
    ADVANCED POWDER TECHNOLOGY, 2009, 20 (02) : 190 - 194
  • [5] Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses
    Rodriguez-Lopez, A.
    Paredes-Arroyo, A.
    Mojica-Gomez, J.
    Estrada-Arteaga, C.
    Cruz-Rivera, J. J.
    Elias Alfaro, C. G.
    Antano-Lopez, R.
    JOURNAL OF NANOPARTICLE RESEARCH, 2012, 14 (08)
  • [6] Electrochemical synthesis of magnetite and maghemite nanoparticles using dissymmetric potential pulses
    A. Rodríguez-López
    A. Paredes-Arroyo
    J. Mojica-Gomez
    C. Estrada-Arteaga
    J. J. Cruz-Rivera
    C. G. Elías Alfaro
    R. Antaño-López
    Journal of Nanoparticle Research, 2012, 14
  • [7] Aggregation of magnetite and maghemite nanoparticles in anoxic conditions
    Rebodos, Robert F.
    Vikesland, Peter J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [8] One-step low-temperature synthesis of akaganeite and maghemite magnetic nanoparticles
    V. V. Spiridonov
    Yu. A. Antonova
    V. S. Kusaya
    M. I. Afanasov
    S. S. Abramchuk
    Russian Chemical Bulletin, 2021, 70 : 1675 - 1681
  • [9] One-step low-temperature synthesis of akaganeite and maghemite magnetic nanoparticles
    Spiridonov, V. V.
    Antonova, Yu A.
    Kusaya, V. S.
    Afanasov, M., I
    Abramchuk, S. S.
    RUSSIAN CHEMICAL BULLETIN, 2021, 70 (09) : 1675 - 1681
  • [10] HIGH-TEMPERATURE OXIDATION OF MAGNETITE TO MAGHEMITE
    JOHNSON, HP
    JENSEN, SD
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1974, 55 (04): : 233 - 233