Compactness in L1 of a vector measure

被引:8
|
作者
Calabuig, J. M. [1 ]
Lajara, S. [2 ]
Rodriguez, J. [3 ]
Sanchez-Perez, E. A. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
[2] Univ Castilla La Mancha, Dept Matemat, Escuela Ingn Ind, Albacete 02071, Spain
[3] Univ Murcia, Fac Informat, Dept Matemat Aplicada, Espinardo 30100, Murcia, Spain
关键词
vector measure; integration operator; compactness; angelic space; boundary; positive Schur property; completely continuous operator; almost Dunford-Pettis operator; strongly weakly compactly generated space; INTEGRATION OPERATORS; WEAK COMPACTNESS; IDEAL PROPERTIES; L-P; BANACH; SPACES; L(1);
D O I
10.4064/sm225-3-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study compactness and related topological properties in the space L-1(m) of a Banach space valued measure m when the natural topologies associated to convergence of vector valued integrals are considered. The resulting topological spaces are shown to be angelic and the relationship of compactness and equi-Integrability is explored. A natural norming subset of the dual unit ball of L-1(m) appears in our discussion and we study when it is a boundary. The (almost) complete continuity of the integration operator is analyzed in relation with the positive Schur property of L-1(m). The strong weakly compact generation of L-1(m) is discussed as well.
引用
收藏
页码:259 / 282
页数:24
相关论文
共 50 条
  • [1] Summability in L1 of a vector measure
    Calabuig, J. M.
    Rodriguez, J.
    Sanchez-Perez, E. A.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (04) : 507 - 519
  • [2] Compactness in quasi-Banach function spaces with applications to L1 of the semivariation of a vector measure
    del Campos, Ricardo
    Fernandez, Anrtonio
    Mayoral, Fernando
    Naranjo, Francisco
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [3] Positive Representations of L1 of a Vector Measure
    Ricardo del Campo
    Enrique A. Sánchez-Pérez
    Positivity, 2007, 11 : 449 - 459
  • [4] L1(μ) for vector-valued measure μ
    Iwo Labuda
    Positivity, 2010, 14 : 801 - 813
  • [5] Positive representations of L1 of a vector measure
    del Campo, Ricardo
    Sanchez-Perez, Enrique A.
    POSITIVITY, 2007, 11 (03) : 449 - 459
  • [6] ON WEAK COMPACTNESS IN L1 SPACES
    Fabian, M.
    Montesinos, V.
    Zizler, V.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (06) : 1885 - 1893
  • [7] PSEUDOUNIFORM STRUCTURES AND WEAK COMPACTNESS ON L1
    FLORESCU, LC
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1989, 3A (01): : 87 - 94
  • [8] Compactness and the fixed point property in l1
    Dominguez-Benavides, T.
    Japon, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (01) : 69 - 79
  • [9] On the Structure of L1 of a Vector Measure via its Integration Operator
    J. M. Calabuig
    J. Rodríguez
    E. A. Sánchez-Pérez
    Integral Equations and Operator Theory, 2009, 64 : 21 - 33
  • [10] Dunford-Pettis type properties in L1 of a vector measure
    Rodriguez, Jose
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)