Algorithmic randomness in empirical data

被引:15
|
作者
McAllister, JW [1 ]
机构
[1] Leiden Univ, Fac Philosophy, NL-2300 RA Leiden, Netherlands
来源
STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE | 2003年 / 34A卷 / 03期
关键词
algorithmic randomness; compression; empirical data; information; law; pattern;
D O I
10.1016/S0039-3681(03)00047-5
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
According to a traditional view, scientific laws and theories constitute algorithmic compressions of empirical data sets collected from observations and measurements. This article defends the thesis that, to the contrary, empirical data sets are algorithmically incompressible. The reason is that individual data points are determined partly by perturbations, or causal factors that cannot be reduced to any pattern. If empirical data sets are incompressible, then they exhibit maximal algorithmic complexity, maximal entropy and zero redundancy. They are therefore maximally efficient carriers of information about the world. Since, on algorithmic information theory, a string is algorithmically random just if it is incompressible, the thesis entails that empirical data sets consist of algorithmically random strings of digits. Rather than constituting compressions of empirical data, scientific laws and theories pick out patterns that data sets exhibit with a certain noise. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:633 / 646
页数:14
相关论文
共 50 条
  • [1] Algorithmic Randomness
    Downey, Rod
    Hirschfeldt, Denis R.
    COMMUNICATIONS OF THE ACM, 2019, 62 (05) : 70 - 80
  • [2] Quantum algorithmic randomness
    Bhojraj, Tejas
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 62 (02)
  • [3] PROBABILISTIC ALGORITHMIC RANDOMNESS
    Buss, Sam
    Minnes, Mia
    JOURNAL OF SYMBOLIC LOGIC, 2013, 78 (02) : 579 - 601
  • [4] Algorithmic complexity and randomness
    Partovi, AH
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 31 - 37
  • [5] Cryptography and Algorithmic Randomness
    Tadaki, Kohtaro
    Doi, Norihisa
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (03) : 544 - 580
  • [6] Cryptography and Algorithmic Randomness
    Kohtaro Tadaki
    Norihisa Doi
    Theory of Computing Systems, 2015, 56 : 544 - 580
  • [7] Experimentally probing the algorithmic randomness and incomputability of quantum randomness
    Abbott, Alastair A.
    Calude, Cristian S.
    Dinneen, Michael J.
    Huang, Nan
    PHYSICA SCRIPTA, 2019, 94 (04)
  • [8] Algorithmic randomness of continuous functions
    Barmpalias, George
    Brodhead, Paul
    Cenzer, Douglas
    Remmel, Jeffrey B.
    Weber, Rebecca
    ARCHIVE FOR MATHEMATICAL LOGIC, 2008, 46 (7-8) : 533 - 546
  • [9] Kolmogorov complexity and algorithmic randomness
    Rojas, J. Maurice
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (02) : 339 - 346
  • [10] Algorithmic Randomness and Fourier Analysis
    Johanna N. Y. Franklin
    Timothy H. McNicholl
    Jason Rute
    Theory of Computing Systems, 2019, 63 : 567 - 586