Homothetic polygons and beyond: Maximal cliques in intersection graphs

被引:1
|
作者
Brimkov, Valentin E. [1 ]
Junosza-Szaniawski, Konstanty [2 ]
Kafer, Sean [3 ]
Kratochvil, Jan [4 ]
Pergel, Martin [5 ]
Rzazewski, Pawel [2 ]
Szczepankiewicz, Matthew [6 ]
Terhaar, Joshua [6 ]
机构
[1] SUNY Buffalo State, Math Dept, Buffalo, NY 14222 USA
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Koszykowa 75, PL-00662 Koszykowa, Poland
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[4] Charles Univ Prague, Dept Appl Math, Fac Math & Phys, Malostranske Nam 25, CR-11800 Prague 1, Czech Republic
[5] Charles Univ Prague, Dept Software & Comp Sci Educ, Fac Math & Phys, Malostranske Nam 25, CR-11800 Prague 1, Czech Republic
[6] Univ Buffalo, Math Dept, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
Geometric intersection graphs; P-hom graphs; Maximal clique; REPRESENTATIONS; RECOGNITION; ALGORITHMS;
D O I
10.1016/j.dam.2018.03.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the structure and the maximum number of maximal cliques in classes of intersection graphs of convex sets in the plane. It is known that convex-set intersection graphs, and also straight-line-segment intersection graphs may have exponentially many maximal cliques. On the other hand, in intersection graphs of homothetic triangles, the maximum number of maximal cliques is polynomial in the number of vertices. We extend the latter result by showing that for every convex polygon P with sides parallel to k directions, every n-vertex graph which is an intersection graph of homothetic copies of P contains at most n(k) inclusion-wise maximal cliques. We actually prove this result for a more general class of graphs, the so-called k(DIR)-CONY, which are intersection graphs of convex polygons whose sides are parallel to some fixed k directions. Moreover, we provide lower bounds on the maximum number of maximal cliques and generalize the upper bound to intersection graphs of higher-dimensional convex polytopes in Euclidean space. Finally, we discuss the algorithmic consequences of the polynomial bound on the number of maximal cliques. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:263 / 277
页数:15
相关论文
共 50 条
  • [1] Knapsack Intersection Graphs and Efficient Computation of Their Maximal Cliques
    Brimkov, Valentin E.
    Computational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications, 2014, 8641 : 176 - 187
  • [2] Intersection Graphs of Maximal Sub-polygons of k-Lizards
    Caroline Daugherty
    Joshua D. Laison
    Rebecca Robinson
    Kyle Salois
    Graphs and Combinatorics, 2023, 39
  • [3] Intersection Graphs of Maximal Sub-polygons of k-Lizards
    Daugherty, Caroline
    Laison, Joshua D.
    Robinson, Rebecca
    Salois, Kyle
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [4] On maximal cliques of polar graphs
    Cossidente, Antonio
    Marino, Giuseppe
    Pavese, Francesco
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 47 : 276 - 285
  • [5] Coloring the maximal cliques of graphs
    Bacsó, G
    Gravier, S
    Gyárfás, A
    Preissmann, M
    Sebo, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 17 (03) : 361 - 376
  • [6] Beyond Homothetic Polygons: Recognition and Maximum Clique
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Pergel, Martin
    Rzazewski, Pawel
    ALGORITHMS AND COMPUTATION, ISAAC 2012, 2012, 7676 : 619 - 628
  • [7] On Intersection Graphs of Convex Polygons
    Brimkov, Valentin E.
    Kafer, Sean
    Szczepankiewicz, Matthew
    Terhaar, Joshua
    COMBINATORIAL IMAGE ANALYSIS, IWCIA 2014, 2014, 8466 : 25 - 36
  • [8] Maximum Cliques in Graphs with Small Intersection Number and Random Intersection Graphs
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    Spirakis, Paul G.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 728 - 739
  • [9] Maximum cliques in graphs with small intersection number and random intersection graphs
    Nikoletseas, Sotiris E.
    Raptopoulos, Christoforos L.
    Spirakis, Paul G.
    COMPUTER SCIENCE REVIEW, 2021, 39
  • [10] Intersection of maximal orthogonally starshaped polygons
    Topalǎ O.
    Journal of Geometry, 2001, 70 (1) : 164 - 167