LOCAL GRADIENT ESTIMATES FOR HEAT EQUATION ON RCD*(k, n) METRIC MEASURE SPACES

被引:2
|
作者
Huang, Jia-Cheng [1 ]
机构
[1] Fudan Univ, Sch Math Sci, 220 Handan Rd, Shanghai 86200433, Peoples R China
基金
中国博士后科学基金;
关键词
CURVATURE-DIMENSION CONDITION; LI-YAU INEQUALITY; RICCI CURVATURE; HARNACK INEQUALITIES; MONOTONICITY FORMULA; LIPSCHITZ FUNCTIONS; ALEXANDROV SPACES; DIRICHLET SPACES; MANIFOLDS; EQUIVALENCE;
D O I
10.1090/proc/14185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we will establish a local gradient estimate and a Liouville type theorem for weak solutions of the heat equation on RCD*(K, N) metric measure spaces.
引用
收藏
页码:5391 / 5407
页数:17
相关论文
共 50 条