POSTERIOR CALIBRATION FOR MULTI-CLASS PARALINGUISTIC CLASSIFICATION

被引:0
|
作者
Gosztolya, Gabor [1 ]
Busa-Fekete, Robert [2 ]
机构
[1] MTA SZTE Res Grp Artificial Intelligence, Szeged, Hungary
[2] Yahoo Res Inc, New York, NY USA
关键词
computational paralinguistics; classification; posterior estimates; posterior calibration; SPEECH; PROBABILITIES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computational paralinguistics is an area which contains diverse classification tasks. In many cases the class distribution of these tasks is highly imbalanced by nature, as the phenomena needed to detect in human speech do not occur uniformly. To ignore this imbalance, it is common to measure the efficiency of classification approaches via the Unweighted Average Recall (UAR) metric in this area. However, general classification methods such as Support-Vector Machines (SVM) and Deep Neural Networks (DNNs) were shown to focus on traditional classification accuracy, which might lead to a suboptimal performance for imbalanced datasets. In this study we show that by performing posterior calibration, this effect can be countered and the UAR scores obtained might be improved. Our approach led to relative error reduction values of 4% and 14% on the test set of two multi-class paralinguistic datasets that had imbalanced class distributions, outperforming the traditional downsampling.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 50 条
  • [1] Calibration tests in multi-class classification: A unifying framework
    Widmann, David
    Lindsten, Fredrik
    Zachariah, Dave
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [2] Multi-class Sentiment Classification on Weibo
    Tian Xian-yun
    Yu Guang
    Li Peng-yu
    2015 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING - 22ND ANNUAL CONFERENCE PROCEEDINGS, VOLS I AND II, 2015, : 90 - 97
  • [3] Bayes covariant multi-class classification
    Such, Ondrej
    Barreda, Santiago
    PATTERN RECOGNITION LETTERS, 2016, 84 : 99 - 106
  • [4] MULTI-CLASS SVM FOR FORESTRY CLASSIFICATION
    Chehade, Nabil Hajj
    Boureau, Jean-Guy
    Vidal, Claude
    Zerubia, Josiane
    2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1673 - +
  • [5] A pragmatic approach to multi-class classification
    Kopinski, Thomas
    Magand, Stephane
    Handmann, Uwe
    Gepperth, Alexander
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [6] Reduction Stumps for Multi-class Classification
    Mohr, Felix
    Wever, Marcel
    Huellermeier, Eyke
    ADVANCES IN INTELLIGENT DATA ANALYSIS XVII, IDA 2018, 2018, 11191 : 225 - 237
  • [7] A sequential model for multi-class classification
    Even-Zohar, Y
    Roth, D
    PROCEEDINGS OF THE 2001 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, 2001, : 10 - 19
  • [8] Novel approach to multi-class classification
    Fang, Y
    Qi, FH
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (06) : 418 - 422
  • [9] Credal ensembling in multi-class classification
    Nguyen, Vu-Linh
    Zhang, Haifei
    Destercke, Sebastien
    MACHINE LEARNING, 2025, 114 (01)
  • [10] An algebraic multi-class classification method
    He, Q
    Liu, ZY
    Shi, ZZ
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 3307 - 3312