Quantification of Nitrogen Status in Rice by Least Squares Support Vector Machines and Reflectance Spectroscopy

被引:71
|
作者
Shao, Yongni [1 ]
Zhao, Chunjiang [2 ]
Bao, Yidan [1 ]
He, Yong [1 ]
机构
[1] Zhejiang Univ, Coll Biosyst Engn & Food Sci, Hangzhou 310029, Zhejiang, Peoples R China
[2] Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词
Rice; Nitrogen; Least squares support vector machines (LS-SVM); Partial least square (PLS); Back propagation neural network (BPNN); SPAD value; NEURAL-NETWORK; PREDICTION; VARIETY; SYSTEM; GREEN; MODEL; INDEX;
D O I
10.1007/s11947-009-0267-y
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The estimation of nitrogen status non-destructively in rice was performed using canopy spectral reflectance with visible and near-infrared reflectance (Vis/NIR) spectroscopy. The canopy spectral reflectance of rice grown with different levels of nitrogen inputs was determined at several important growth stages. This study was conducted at the experiment farm of Zhejiang University, Hangzhou, China. The soil plant analysis development (SPAD) value was used as a reference data that indirectly reflects nitrogen status in rice. A total of 64 rice samples were used for Vis/NIR spectroscopy at 325-1075 nm using a field spectroradiometer, and chemometrics of partial least square (PLS) was used for regression. The correlation coefficient (r), root mean square error of prediction, and bias in prediction set by PLS were, respectively, 0.8545, 0.7628, and 0.0521 for SPAD value prediction in tillering stage, 0.9082, 0.4452, and -0.0109 in booting stage, and 0.8632, 0.7469, and 0.0324 in heading stage. Least squares support vector machine (LS-SVM) model was compared with PLS and back propagation neural network methods. The results showed that LS-SVM was superior to the conventional linear and non-linear methods in predicting SPAD values of rice. Independent component analysis was executed to select several sensitive wavelengths (SWs) based on loading weights; the optimal LS-SVM model was achieved with SWs of 560, 575-580, 700, 730, and 740 nm for SPAD value prediction in booting stage. It is concluded that Vis/NIR spectroscopy combined with LS-SVM regression method is a promising technique to monitor nitrogen status in rice.
引用
收藏
页码:100 / 107
页数:8
相关论文
共 50 条
  • [1] Quantification of Nitrogen Status in Rice by Least Squares Support Vector Machines and Reflectance Spectroscopy
    Yongni Shao
    Chunjiang Zhao
    Yidan Bao
    Yong He
    Food and Bioprocess Technology, 2012, 5 : 100 - 107
  • [2] Digital Least Squares Support Vector Machines
    Davide Anguita
    Andrea Boni
    Neural Processing Letters, 2003, 18 : 65 - 72
  • [3] Fuzzy least squares support vector machines
    Tsujinishi, D
    Abe, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 1599 - 1604
  • [4] Digital Least Squares Support Vector Machines
    Anguita, D
    Boni, A
    NEURAL PROCESSING LETTERS, 2003, 18 (01) : 65 - 72
  • [5] Recurrent least squares support vector machines
    Suykens, JAK
    Vandewalle, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (07): : 1109 - 1114
  • [6] Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk
    Borin, Alessandra
    Ferrao, Marco Flores
    Mello, Cesar
    Maretto, Danilo Althmann
    Poppi, Ronei Jesus
    ANALYTICA CHIMICA ACTA, 2006, 579 (01) : 25 - 32
  • [7] Least Squares Support Vector Machines Based on Support Vector Degrees
    Li, Lijuan
    Li, Youfeng
    Su, Hongye
    Chu, Jian
    INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I, 2006, 4113 : 1275 - 1281
  • [8] Fuzzy least squares twin support vector machines
    Sartakhti, Javad Salimi
    Afrabandpey, Homayun
    Ghadiri, Nasser
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 85 : 402 - 409
  • [9] Research on Least Squares Support Vector Machines Algorithm
    Ming, Zhao
    PROCEEDINGS OF THE 2015 INTERNATIONAL INDUSTRIAL INFORMATICS AND COMPUTER ENGINEERING CONFERENCE, 2015, : 1432 - 1435
  • [10] Regularized Recurrent Least Squares Support Vector Machines
    Qui, Hai-Ni
    Oussar, Yacine
    Dreyfus, Gerard
    Xu, Weisheng
    2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS, 2009, : 508 - +