Gain Scheduling Control of Wheel-Legged Robot LPV system Based on HOSVD

被引:0
|
作者
Li, Jiachen [1 ]
Zhou, Haitao [1 ]
Feng, Haibo [1 ]
Zhang, Songyuan [1 ]
Fu, Yili [1 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150001, Peoples R China
关键词
LPV; HOSVD; Gain scheduling; Wheel-legged robot; MODEL;
D O I
10.1109/icma.2019.8816261
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear Parameter Varying (LPV) system shows preferable performance in dealing with NonLinear (NL) systems and systems with time-varying parameters, based on a kind of wheel-legged robot with two-wheel and balance as Inverted Pendulum, this paper proposes a gain scheduling control method for balancing using LPV system on Equivalent model with Center Of Mass (COM). In order to ensure the stability and responsive of the system with possible values for all variable parameters, Higher Order Singular Value Decomposition (HOSVD) is used for constructing polytopic LPV system, then the robust controller is designed for the vertex systems forthputting Linear Matrix Inequality (LMI) approach, and the gain scheduling controller for global system is obtained by convex combination of vertex LTI systems. The simulation results show that the system can achieve the expected indicators.
引用
收藏
页码:2487 / 2492
页数:6
相关论文
共 50 条
  • [1] Idea of wheel-legged robot and its control system design
    Szrek, J.
    Wojtowicz, P.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (01) : 43 - 50
  • [2] Stability analysis and control for a wheel-legged robot
    Zhilong, Li
    Zhibo, Sun
    Jinhao, Liu
    Jiangming, Kan
    Chunzhan, Yu
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2018, 80 (02): : 15 - 26
  • [3] Stability control of an hybrid wheel-legged robot
    Besseron, G.
    Grand, Ch.
    Ben Amar, F.
    Plumet, F.
    Bidaud, Ph.
    CLIMBING AND WALKING ROBOTS, 2006, : 533 - 540
  • [4] Cooperative attitude control for a wheel-legged robot
    Peng, Hui
    Wang, Junzheng
    Shen, Wei
    Shi, Dawei
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2019, 12 (06) : 1741 - 1752
  • [5] Cooperative attitude control for a wheel-legged robot
    Hui Peng
    Junzheng Wang
    Wei Shen
    Dawei Shi
    Peer-to-Peer Networking and Applications, 2019, 12 : 1741 - 1752
  • [6] RECONFIGURABLE WHEEL-LEGGED ROBOT
    Virgala, Ivan
    Mikova, Lubica
    Kelemenova, Tatiana
    Kelemen, Michal
    Prada, Erik
    Hroncova, Darina
    Varga, Martin
    MM SCIENCE JOURNAL, 2020, 2020 : 3960 - 3965
  • [7] Design of LegVan Wheel-Legged Robot's Mechanical and Control System
    Gronowicz, A.
    Szrek, J.
    SYROM 2009: PROCEEDINGS OF THE 10TH IFTOMM INTERNATIONAL SYMPOSIUM ON SCIENCE OF MECHANISMS AND MACHINES, 2009, 2010, : 145 - +
  • [8] Model predictive control based path following for a wheel-legged robot
    Zhang, Ke
    Wang, Junzheng
    Peng, Hui
    Dang, Yunpei
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3925 - 3930
  • [9] Analysis on Coupled Optimization Control for a Wheel-Legged Robot
    Tian, Jianying
    Zhao, Honghua
    2015 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2015, : 2577 - 2582
  • [10] Cooperative control strategy of wheel-legged robot based on attitude balance
    Shen, Yaojie
    Chen, Guangrong
    Li, Zhaoyang
    Wei, Ningze
    Lu, Huafeng
    Meng, Qingyu
    Guo, Sheng
    ROBOTICA, 2023, 41 (02) : 566 - 586