Analog VLSI Implementation of Wide-field Integration Methods

被引:8
|
作者
Xu, Peng [2 ,3 ]
Humbert, James Sean [1 ]
Abshire, Pamela [2 ,4 ]
机构
[1] Univ Maryland, Dept Aerosp Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Texas Instruments Inc, Columbia, MD USA
[4] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Bio-inspired vision; Autonomous navigation; MOTION SENSOR; RESPONSE PROPERTIES; SILICON RETINA; VISUAL-SYSTEM; INSECT VISION; VELOCITY; FLOW; FLY; ARCHITECTURES; INTERNEURONS;
D O I
10.1007/s10846-011-9549-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a novel integrated, single-chip solution for autonomous navigation inspired by the computations in the insect visuomotor system is proposed. A generalization of the theory of wide field integration (WFI) is presented which supports the use of sensors with a limited field of view, and the system concept is validated based on experiments using a prototype single-chip WFI sensor. The VLSI design implements (1) an array of Elementary Motion Detectors (EMDs) to derive local estimates of optic flow, (2) a novel mismatch compensation approach to handle dissimilarities in local motion detector units, and (3) on-chip programmable optic flow pattern weighting (Wide-Field Integration) to extract relative speed and proximity with respect to the surrounding environment. Computations are performed in the analog domain and in parallel, providing outputs at 1 kHz while consuming only 42.6 mu W of power. The resulting sensor is integrated with a ground vehicle and navigation of corridor-like environments is demonstrated.
引用
收藏
页码:465 / 487
页数:23
相关论文
共 50 条
  • [1] Analog VLSI Implementation of Wide-field Integration Methods
    Peng Xu
    James Sean Humbert
    Pamela Abshire
    Journal of Intelligent & Robotic Systems, 2011, 64 : 465 - 487
  • [2] Experimental validation of wide-field integration methods for autonomous navigation
    Humbert, J. Sean
    Hyslop, Andrew
    Chinn, Michael
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 2150 - 2155
  • [3] Underwater Navigation Behaviors Using Wide-Field Integration Methods
    Ranganathan, Badri N.
    Dimble, Kedar D.
    Faddy, James M.
    Humbert, J. Sean
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 4147 - 4152
  • [4] Implementation of wide-field integration of optic flow for autonomous quadrotor navigation
    Joseph Conroy
    Gregory Gremillion
    Badri Ranganathan
    J. Sean Humbert
    Autonomous Robots, 2009, 27 : 189 - 198
  • [5] Implementation of wide-field integration of optic flow for autonomous quadrotor navigation
    Conroy, Joseph
    Gremillion, Gregory
    Ranganathan, Badri
    Humbert, J. Sean
    AUTONOMOUS ROBOTS, 2009, 27 (03) : 189 - 198
  • [6] Erratum to: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation
    Joseph Conroy
    Gregory Gremillion
    Badri Ranganathan
    J. Sean Humbert
    Autonomous Robots, 2009, 27 (3) : 199 - 200
  • [7] Wide-field TCSPC: methods and applications
    Hirvonen, Liisa M.
    Suhling, Klaus
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (01)
  • [8] Electrolocation-based underwater obstacle avoidance using wide-field integration methods
    Dimble, Kedar D.
    Faddy, James M.
    Humbert, J. Sean
    BIOINSPIRATION & BIOMIMETICS, 2014, 9 (01)
  • [9] Extraction of Relative Proximity from Electrostatic Images Using Wide-Field Integration Methods
    Dimble, Kedar D.
    Faddy, James M.
    Humbert, J. Sean
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6004 - 6009
  • [10] Statistical cue integration for foveated wide-field surveillance
    Prince, SJD
    Elder, JH
    Hou, YQ
    Sizintsev, M
    Olevskiy, Y
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 603 - 610