Artificial Chemist: An Autonomous Quantum Dot Synthesis Bot

被引:66
作者
Epps, Robert W. [1 ]
Bowen, Michael S. [1 ]
Volk, Amanda A. [1 ]
Abdel-Latif, Kameel [1 ]
Han, Suyong [1 ]
Reyes, Kristofer G. [2 ]
Amassian, Aram [3 ]
Abolhasani, Milad [1 ]
机构
[1] North Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27606 USA
[2] Univ Buffalo, Dept Mat Design & Innovat, Buffalo, NY 14260 USA
[3] North Carolina State Univ, Organ & Carbon Elect Labs ORaCEL, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
基金
美国国家科学基金会;
关键词
autonomous synthesis; machine learning; microfluidics; perovskites; quantum dots; HALIDE PEROVSKITES CSPBX3; ANION-EXCHANGE; NANOCRYSTALS; REACTOR; BR; CL; OPTIMIZATION; TEMPERATURE; PLATFORM;
D O I
10.1002/adma.202001626
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The optimal synthesis of advanced nanomaterials with numerous reaction parameters, stages, and routes, poses one of the most complex challenges of modern colloidal science, and current strategies often fail to meet the demands of these combinatorially large systems. In response, an Artificial Chemist is presented: the integration of machine-learning-based experiment selection and high-efficiency autonomous flow chemistry. With the self-driving Artificial Chemist, made-to-measure inorganic perovskite quantum dots (QDs) in flow are autonomously synthesized, and their quantum yield and composition polydispersity at target bandgaps, spanning 1.9 to 2.9 eV, are simultaneously tuned. Utilizing the Artificial Chemist, eleven precision-tailored QD synthesis compositions are obtained without any prior knowledge, within 30 h, using less than 210 mL of total starting QD solutions, and without user selection of experiments. Using the knowledge generated from these studies, the Artificial Chemist is pre-trained to use a new batch of precursors and further accelerate the synthetic path discovery of QD compositions, by at least twofold. The knowledge-transfer strategy further enhances the optoelectronic properties of the in-flow synthesized QDs (within the same resources as the no-prior-knowledge experiments) and mitigates the issues of batch-to-batch precursor variability, resulting in QDs averaging within 1 meV from their target peak emission energy.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Facile Room-Temperature Anion Exchange Reactions of Inorganic Perovskite Quantum Dots Enabled by a Modular Microfluidic Platform [J].
Abdel-Latif, Kameel ;
Epps, Robert W. ;
Kerr, Corwin B. ;
Papa, Christopher M. ;
Castellano, Felix N. ;
Abolhasani, Milad .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (23)
[2]   Highly efficient air-stable colloidal quantum dot solar cells by improved surface trap passivation [J].
Azmi, Randi ;
Sinaga, Septy ;
Aqoma, Havid ;
Seo, Gabsoek ;
Ahn, Tae Kyu ;
Park, Minsuk ;
Ju, Sang-Yong ;
Lee, Jin-Won ;
Kim, Tae-Wook ;
Oh, Seung-Hwan ;
Jang, Sung-Yeon .
NANO ENERGY, 2017, 39 :86-94
[3]   Pick a Color MARIA: Adaptive Sampling Enables the Rapid Identification of Complex Perovskite Nanocrystal Compositions with Defined Emission Characteristics [J].
Bezinge, Leonard ;
Maceiczyk, Richard M. ;
Lignos, Ioannis ;
Kovalenko, Maksym V. ;
deMello, Andrew J. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) :18869-18878
[4]   Yb- and Mn-Doped Lead-Free Double Perovskite Cs2AgBiX6 (X = Cl-, Br-) Nanocrystals [J].
Chen, Na ;
Cai, Tong ;
Li, Wenhao ;
Hills-Kimball, Katie ;
Yang, Hanjun ;
Que, Meidan ;
Nagaoka, Yasutaka ;
Liu, Zhenyang ;
Yang, Dong ;
Dong, Angang ;
Xu, Cheng-Yan ;
Zia, Rashid ;
Chen, Ou .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) :16855-16863
[5]   High-performance crosslinked colloidal quantum-dot light-emitting diodes [J].
Cho, Kyung-Sang ;
Lee, Eun Kyung ;
Joo, Won-Jae ;
Jang, Eunjoo ;
Kim, Tae-Ho ;
Lee, Sang Jin ;
Kwon, Soon-Jae ;
Han, Jai Yong ;
Kim, Byung-Ki ;
Choi, Byoung Lyong ;
Kim, Jong Min .
NATURE PHOTONICS, 2009, 3 (06) :341-345
[6]   A robotic platform for flow synthesis of organic compounds informed by AI planning [J].
Coley, Connor W. ;
Thomas, Dale A., III ;
Lummiss, Justin A. M. ;
Jaworski, Jonathan N. ;
Breen, Christopher P. ;
Schultz, Victor ;
Hart, Travis ;
Fishman, Joshua S. ;
Rogers, Luke ;
Gao, Hanyu ;
Hicklin, Robert W. ;
Plehiers, Pieter P. ;
Byington, Joshua ;
Piotti, John S. ;
Green, William H. ;
Hart, A. John ;
Jamison, Timothy F. ;
Jensen, Klavs F. .
SCIENCE, 2019, 365 (6453) :557-+
[7]   A graph-convolutional neural network model for the prediction of chemical reactivity [J].
Coley, Connor W. ;
Jin, Wengong ;
Rogers, Luke ;
Jamison, Timothy F. ;
Jaakkola, Tommi S. ;
Green, William H. ;
Barzilay, Regina ;
Jensen, Klavs F. .
CHEMICAL SCIENCE, 2019, 10 (02) :370-377
[8]  
Elvira KS, 2013, NAT CHEM, V5, P905, DOI [10.1038/NCHEM.1753, 10.1038/nchem.1753]
[9]   Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing [J].
Epps, Robert W. ;
Felton, Kobi C. ;
Coley, Connor W. ;
Abolhasani, Milad .
LAB ON A CHIP, 2017, 17 (23) :4040-4047
[10]   A Novel Internet-Based Reaction Monitoring, Control and Autonomous Self-Optimization Platform for Chemical Synthesis [J].
Fitzpatrick, Daniel E. ;
Battilocchio, Claudio ;
Ley, Steven V. .
ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2016, 20 (02) :386-394