Party affiliation classification;
Political text representation;
Language models;
D O I:
10.1007/978-3-031-08473-7_35
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
We analyze the use of language models for political text classification. Political texts become increasingly available and language models have succeeded in various natural language processing tasks. We apply two baselines and different language models to data from the UK, Germany, and Norway. Observed accuracy shows language models improving on the performance of the baselines by up to 10.35% (Norwegian), 12.95% (German), and 6.39% (English).
机构:
Ford Motor Co, Dearborn, MI 48126 USA
Northwestern Univ, Ctr Global Citizenship, Kellogg Sch Management, Evanston, IL 60208 USAFord Motor Co, Dearborn, MI 48126 USA
Yu, Bei
Kaufmann, Stefan
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Linguist, Evanston, IL 60208 USAFord Motor Co, Dearborn, MI 48126 USA
Kaufmann, Stefan
Diermeier, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Dept Managerial Econ & Decis Sci MEDS, Evanston, IL 60208 USA
Ford Motor Co, Ctr Global Citizenship, Dearborn, MI 48126 USA
Kellogg Sch Management
Northwestern Univ, NICO, Evanston, IL 60208 USAFord Motor Co, Dearborn, MI 48126 USA
机构:
Univ Pompeu Fabra, Dept Econ & Business, Barcelona 08005, SpainUniv Pompeu Fabra, Dept Econ & Business, Barcelona 08005, Spain
Le Mens, Gael
Gallego, Aina
论文数: 0引用数: 0
h-index: 0
机构:
Barcelona Sch Econ, Barcelona 08005, Spain
UPF, Barcelona Sch Management, Barcelona 08008, SpainUniv Pompeu Fabra, Dept Econ & Business, Barcelona 08005, Spain