Accelerated Modified Tseng's Extragradient Method for Solving Variational Inequality Problems in Hilbert Spaces

被引:3
|
作者
Okeke, Godwin Amechi [1 ]
Abbas, Mujahid [2 ,3 ]
De la Sen, Manuel [4 ]
Iqbal, Hira [5 ]
机构
[1] Fed Univ Technol Owerri, Sch Phys Sci, Dept Math, Funct Anal & Optimizat Res Grp Lab FANORG, PMB 1526, Owerri, Nigeria
[2] Govt Coll Univ, Dept Math, Katchery Rd, Lahore 54000, Pakistan
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[4] Univ Basque Country, Inst Res & Dev Proc, Campus Leioa Bizkaia,POB 644, Leioa 48940, Spain
[5] Natl Univ Comp & Emerging Sci, Dept Sci & Humanities, Lahore Campus, Lahore 54000, Pakistan
关键词
Tseng's extragradient; monotone operators; inertial iterative algorithms; variational inequality problems; Hilbert spaces; strong convergence; SUBGRADIENT TECHNIQUES; STRONG-CONVERGENCE; FIXED-POINTS; ALGORITHM; OPTIMIZATION; PROJECTION;
D O I
10.3390/axioms10040248
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to propose a new iterative algorithm to approximate the solution for a variational inequality problem in real Hilbert spaces. A strong convergence result for the above problem is established under certain mild conditions. Our proposed method requires the computation of only one projection onto the feasible set in each iteration. Some numerical examples are presented to support that our proposed method performs better than some known comparable methods for solving variational inequality problems.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A modified Tseng's extragradient method for solving variational inequality problems
    Peng, Jian-Wen
    Qiu, Ying-Ming
    Shehu, Yekini
    APPLICABLE ANALYSIS, 2024, 103 (13) : 2328 - 2352
  • [2] Tseng's extragradient method with double projection for solving pseudomonotone variational inequality problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Li, Xiaoxiao
    Dong, Qiao-Li
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [3] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    O. K. Oyewole
    H. A. Abass
    A. A. Mebawondu
    K. O. Aremu
    Numerical Algorithms, 2022, 89 : 769 - 789
  • [4] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    Oyewole, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    Aremu, K. O.
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 769 - 789
  • [5] Modified Tseng’s extragradient algorithms for variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    Journal of Fixed Point Theory and Applications, 2018, 20
  • [6] A new self adaptive Tseng's extragradient method with double-projection for solving pseudomonotone variational inequality problems in Hilbert spaces
    Xie, Zhongbing
    Cai, Gang
    Li, Xiaoxiao
    Dong, Qiao-Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (02) : 539 - 554
  • [7] Modified Tseng's extragradient algorithms for variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (04)
  • [8] A strong convergence theorem for Tseng’s extragradient method for solving variational inequality problems
    Duong Viet Thong
    Nguyen The Vinh
    Yeol Je Cho
    Optimization Letters, 2020, 14 : 1157 - 1175
  • [9] A strong convergence theorem for Tseng's extragradient method for solving variational inequality problems
    Thong, Duong Viet
    Vinh, Nguyen The
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2020, 14 (05) : 1157 - 1175
  • [10] Modified Subgradient Extragradient Methods for Solving Bilevel Split Variational Inequality Problems in Hilbert Spaces
    Van, Le Huynh My
    Thuy, Dang Le
    Anh, Tran Viet
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (03) : 459 - 478