Renyi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting

被引:59
|
作者
Pennini, F
Plastino, AR
Plastino, A
机构
[1] Natl Univ La Plata, Fac Ciencias Astron & Geofis, RA-1900 La Plata, Argentina
[2] CONICET, Argentine Natl Res Ctr, RA-1033 Buenos Aires, DF, Argentina
来源
PHYSICA A | 1998年 / 258卷 / 3-4期
关键词
Renyi and Tsallis entropies; Fisher information; nonextensivity;
D O I
10.1016/S0378-4371(98)00272-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study nonextensive statistical scenarios a la Tsallis with reference to Fisher's information and Renyi's entropy. A new way of evaluating Tsallis' generalized expectation values is examined within such a context, and is shown to lead to a much better Cramer-Rao bound than the customary procedure. A connection between the information measures of Fisher's and Renyi's is found. We show that Fisher's measure for translation families remains additive even in a non-extensive Tsallis setting. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:446 / 457
页数:12
相关论文
共 47 条